Skip to main navigation menu Skip to main content Skip to site footer

Capacidad de bacterias halófilas para capturar sodio in Vitro y su posible aplicación en bioremediación en suelos salinos-sódicos

Capacidad de bacterias halófilas para capturar sodio in Vitro y su posible aplicación en bioremediación en suelos salinos-sódicos




Section
Artículo Original

How to Cite
Sánchez Lea, L. l C., & Arguello Arias, H. (2006). Capacidad de bacterias halófilas para capturar sodio in Vitro y su posible aplicación en bioremediación en suelos salinos-sódicos. NOVA, 4(6). https://doi.org/10.22490/24629448.357

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Ligia l Consuelo Sánchez Lea
    Heliodoro Arguello Arias

      The inadequate agricultural practices have been the cause of the increase of saline-sodic soils in the entireplanet. Its recovery has been done mainly changing sodium by another cation, generally calcium, remedying inmechanical form and using halotolerant plants. Although these practices control the problem to a certainextent, it has not been able to make an effective recovery in these soils. This work displays as an alternative,the use of bioremediation with halophiles bacteria. The objective of the investigation was to evaluate thecapacity of five species of halophiles to capture in vitro sodium ions and to design a proposal for its possibleapplication in bioremediation of sodic and saline soils. The capture of sodium was demonstrated by comparing he initial concentration of the sodium solution without inoculating and the concentration of the same one withthe bacterium inoculated through the technique of spectroscopy of atomic absorption. The bacteria thatdemonstrated the capacity to capture sodium in vitro were: Vibrio alginolyticus, Vibrio metschnikovii,Flavimonas oryzihabitans and Agrobacterium tumefasciens. Serratia marcescens did not demonstrate cap-ture. The verification of the sodium capture allowed as to make two proposals: to design a bioreactor with amicrobial partnership that includes the bacteria that captured sodium in the experiment and native bacteria insaline and sodic soils and to use genetic engineering to implant the gene of sodium bomb of the species withbetter capture in existing indigenous flora in this type of grounds.


      Article visits 912 | PDF visits 726


      Downloads

      Download data is not yet available.
      1. Oldeman, L. R. Global extent of soil degradation. International Soil Reference and Information Centre. Hinkeloord Agricultural University Wageningen, 1991.
      2. Brandt, C. J.; Thornes, J. B. Mediterranean Desertification and Land Use. John Wiley & Sons, Chichester, 1996. pp. 43-86.
      3. FAO. Global Network on Integrated Soil Management for Sustainable Use of Salt-Affected Soils. Food and Agriculture Organization, Rome, Italy 2000.
      4. FAO. The Salt of the Earth: Hazardous for Food Production. World Food Summit, Food and Agriculture Organization,
      5. Rome, Italy 2002.
      6. Sanchez, P.A.; Cochrane, T.T. Soil constrains in relation to major farming systems of Tropical America. In Soil related constrain to food production in the tropics. Los Baños, Filipinas, 1980, pp. 107-139.
      7. Aguilera, M.F. El problema de la salinidad y sodio en el Valle del Cauca. Suelos Ecuatoriales. Colombia. 1979, 10 (2): 98 – 114.
      8. Eweis, Juana., Ergas Sarina., Chang Daniel., Schroeder Edward. Principios de recuperación. Editorial Mc Graw Hill. España. 1999.
      9. Chen Bor-Yann., Wu Chih-Hui., Chang Jo-Shu. An assessment of the toxicity of metals to Pseudomonas aeruginosa PU21. Bioresource Technology. 2006,Vol 97. 15: 1880-1886
      10. Green-Ruiz Carlos. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresource Technology. 2006, Vol 97, 15:1907-1911.
      11. Pal Arundhati., Ghosh Suchhanda., Paul A.K. Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology. 2005.
      12. Madigan Michael., Martinko John., Parker Jack. Brock. Biología de los microorganismos. Pearson Prentice Hall . Madrid. 2004, pp 100-111.
      13. Fukuoka Hajime., Yakushi Toshiharu., Kusumoto Akiko., Homma Michio. Assembly of Motor Proteins, PomA and PomB, in the NaC-driven Stator of the Flagellar Motor. J. Mol. Biol. 2005, 351: 707–717.
      14. Hayashi Maki., Shibata Naoaki., Nakayama Yuji., Yoshikawa Kazuhiro., Unemotoa Tsutomu. Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na+-translocating NADH-quinone reductase. Archives of Biochemistry and Biophysics. 2002, 401: 173–177.
      15. Glynn Ian M. Hundred years of sodium pumping. Annu. Rev. Physiol. 2001, 64:1–18.
      16. Nakayama Yuji., ayashi Maki.,Unemoto Tsutomu. Identification of six subunits constituting Na.- Translocating NADH-quinone reductase from the marine Vibrio alginolyticus Federation of European Biochemical Societies FEBS Letters. 1998, 422: 240.
      17. Rosen Barry P. Recent advances in bacterial ion transport. Ann. Rev. Microbiol. 1986. 40:263-86.
      18. Bogachev Alexander V., Murtazina Rachilya A., Skulachev Vladimir P. 1997. The Na/e stoichiometry of the Na.-motive NADH : quinine oxidoreductase in Vibrio alginolyticus. FEBS Letters 409: 475-477.
      19. Darnell James., Lodish Harvey., Baltimore David. Transporte a través de membranes celulares. En: Biología celular y molecular. Editorial Labor. USA. 1986.
      20. Murray Robert., Granner Daryl., Mayer Peter., Rodwell Victor. Harper-Bioquímica. Mexico. 2001, pp. 605-606.
      21. Baron Christian. From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEM Microbiology letters. 2005, 253: 163-170.
      22. -----------------------------------------------------------------------------------
      23. DOI: http://dx.doi.org/10.22490/24629448.357
      Sistema OJS 3.4.0.5 - Metabiblioteca |