Skip to main navigation menu Skip to main content Skip to site footer

China ink in adherents ceil in culture

Técnica de Tinta China en células adherentes en cultivo




Section
Artículo Original Producto de Investigación

How to Cite
Ordoñez Vásquez, A., Jaramillo Gómez, L., Ibata, M., & Suárez-Obando, F. (2017). China ink in adherents ceil in culture. NOVA, 14(25), 9-17. https://doi.org/10.22490/24629448.1722

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Adriana Ordoñez Vásquez
    Lorenza Jaramillo Gómez
      Margie Ibata
        Fernando Suárez-Obando

          Objective. To implement the use of China ink, as an alternative technique, to display morphological changes in cellular wall and cellular matrix in adherent living cells in culture flask, before and after exposure to a toxic substance. Methods. China Ink was implemented as a contrast technique in optical microscopy, by comparing observed sharpness (proper appreciation of edge structures) from cultures of bone marrow stem cells (CTMO) exposed to the toxic glycoalkaloid α-solanine. The sharpness differences were compared among the diverse treatments with Fisher’s exact test. Results. China Ink staining clearly helps to identify abnormal phenotypic changes, secondary to cytotoxic exposure in adherent cells in culture (p <0.0001). Conclusions. China Ink is useful in clearly displaying the CTMO cells and the effects of the α-solanine glycoalkaloid in adherent cells in culture. It is a simple method that contributes to the understanding of the effect of various substances on CTMO in culture.


          Article visits 778 | PDF visits 213


          Downloads

          Download data is not yet available.
          1. Swanson, M., et al., A screening method for ranking and scoring chemicals by potential human health and environmental impacts. 1997. 16(2): p. 372-383. doi: 10.1002/etc.5620160237.
          2. Leist, M. and M. Jaattela, Triggering of apoptosis by cathepsins. Cell Death Differ, 2001. 8(4): p. 324-6. Citado en PubMed PMID: 11550083
          3. Strober, W., Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol, 2015. 111: p. A3 B 1-3. doi: 10.1002/0471142735. ima03bs111. Citado en Pubmed PMID: 26529666.
          4. Repetto, G., A. del Peso, and J.L. Zurita, Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc, 2008. 3(7): p. 1125-31. doi: 10.1038/nprot.2008.75.
          5. Citado en Pubmed PMID: 18600217.
          6. Olsson, T., et al., Leakage of adenylate kinase from stored blood cells. J Appl Biochem, 1983. 5(6): p. 437-45. Citado en Pubmed PMID: 6088465.
          7. Corey, M.J., et al., A very sensitive coupled luminescent assay for cytotoxicity and complement-mediated lysis. J Immunol Methods, 1997. 207(1): p. 43-51. Citado en Pubmed PMID: 9328585.
          8. Cho, M.H., et al., A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker.
          9. Toxicol In Vitro, 2008. 22(4): p. 1099-106. doi: 10.1016/j. tiv.2008.02.013. Citado en Pubmed PMID: 18400464.
          10. Burch, C.R. and J.P.P. Stock, Phase-contrast microscopy. Journal of Scientific Instruments, 1942. 19(5): p. 71.
          11. Tan, Y.F., C.F. Leong, and S.K. Cheong, Observation of dendritic cell morphology under light, phase-contrast or confocal laser scanning microscopy. Malays J Pathol, 2010. 32(2): p. 97-102. Citado en Pubmed: 21329180.
          12. Digan, M.E., et al., Evaluation of division-arrested cells for cell-based high-throughput screening and profiling. J Biomol Screen, 2005. 10(6): p. 615-23. Citado en Pubmed: 16103416.
          13. Gillespie, A.W., et al., Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biology and Biochemistry, 2011. 43(4): p.
          14. -777. doi:10.1016/j.soilbio.2010.12.010
          15. Tangarife-Tobón, L., L. Jaramillo-Gómez, and C. DuránCorrea, Cultivo de células troncales de médula ósea de rata (rctmo) en matrices de colágeno tipo i, para su uso en Protocolos de regeneración de tejidos in Centro de Investigaciones Odontológicas. 2014, Pontificia Universidad Javeriana: Bogotá.
          16. Lu, M.K., et al., alpha-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol Pharm Bull, 2010. 33(10): p. 1685-91.Citado en Pubmed: 20930376
          17. Martín-Lacave, I. and T. García-Caballero, Atlas de Inmunohistoquímica: Caracterización de células, tejidos y organos normales. 2012, Ediciones Díaz de Santos, S.A. p. 22.
          18. Kunjapu, J.T., Essays in ink chemistry. 2001, New York: Nova Science.
          19. Gutiérrez, E. and R. Garcia, Estudio comparativo in vitro para medir la microfiltración en obturación retrógrada con PRO ROOT®, CPM® y Súper-EBA®. Revista Odontológica Mexicana, 2007. 11(3): p. 140-144.
          20. Greco-Machado, Y., et al., Técnicas de diafanización: estudio comparativo. Endodoncia, 2008. 26(2): p. 85-92.
          21. Lengua-Almora, F., E. Herrera-Zuleta, and J. Kunlin, Nuevos documentos experimentales de inversión circulatoria en miembro isquémico y de inyección retrógrada en piezas anatómicas. Diagnóstico (Perú), 1984. 13(3): p. 77-86.
          22. Padilla, S., et al., Trasplante de células mononucleares progenitoras derivadas de médula ósea por vía endovenosa retrógrada distal para inducir angiogénesis en miembros inferiores con isquemia. Cir Gen, 2009. 31(4): p. 213-218.
          23. Zapata-Valencia, J. and C. Rojas-Cruz, Una actualización sobre Blastocystis sp. Revista Gastrohnup 2012. 14(3): p. 94-100.
          24. Zerpa, R. and L. Huicho, Tinta China modificada para la detección de formas encapsuladas de Blastocystis hominis. Rev. mex. patol. clín, 1999. 46(3): p. 184-186.
          25. Brighton, C.T. and R.M. Hunt, Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am, 1991. 73(6): p. 832-47. Citado en Pubmed: 2071617.
          26. Yamashoji, S. and T. Matsuda, Synergistic cytotoxicity induced by alpha-solanine and alpha-chaconine. Food Chem, 2013. 141(2): p. 669-74. Citado en Pubmed: 23790833.
          27. McGreevy, E.M., et al., Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol Open, 2015. 4(2): p. 186-96. doi: 10.1242/bio.20149589. Citado en Pubmed: 25596276.
          28. Cibois, M., et al., BMP signalling controls the construction of vertebrate mucociliary epithelia. Development, 2015. 142(13):
          29. p. 2352-63. doi: 10.1242/dev.118679. Citado en Pubmed: 26092849.
          30. Yu, T., et al., Stem Cells in Tooth Development, Growth, Repair, and Regeneration. Curr Top Dev Biol, 2015. 115:
          31. p. 187-212. doi: 10.1016/bs.ctdb.2015.07.010. Citado en Pubmed: 26589926.
          32. Nausa, J. G. (2014). “Evaluación Clínica y radiográfica de injertos biocerámicos tipo Hidroxiapatita como alternativa en la reconstrucción de alveolos dentarios postexodoncia.”
          33. Páez, L. C. C., et al. (2015). “Comparación del cultivo celular de HeLa y HEp-2: Perspectivas de estudios con Chlamydia trachomatis.” Nova 13(23).
          34. ===========================================
          35. DOI: http://dx.doi.org/10.22490/24629448.1722
          Sistema OJS 3.4.0.5 - Metabiblioteca |