Skip to main navigation menu Skip to main content Skip to site footer

Clinical and radiographic evaluation of grafts biocerámicos type Hidroxiapatita like alternative in the reconstruction of alveoli toothworts postexodoncia

Evaluación Clínica y radiográfica de injertos biocerámicos tipo Hidroxiapatita como alternativa en la reconstrucción de alveolos dentarios postexodoncia




Section
Artículo Original Producto de Investigación

How to Cite
Gallón Nausa, J. (2014). Clinical and radiographic evaluation of grafts biocerámicos type Hidroxiapatita like alternative in the reconstruction of alveoli toothworts postexodoncia. NOVA, 12(22). https://doi.org/10.22490/24629448.1043

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Julián Gallón Nausa

    Objective: The aim of this work is to evaluate the behavior of the bony marginal comb with the platform of the implant as reference, in patients’ cases with graft aloplástico of the pharmaceutical house Madrob in order to support the bony integrity as fundamental element in the placement of dental implants. Materials and methods: There was carried out a study of comparative and market type, with an intentional sample of 30 patients for a total of 81 implants with previous requirement of graft aloplásticos in alveoli pos exodoncia and later dental implant. There were realized clinical and radiographic controls for 3, 6, 9, 12, 24 and 36 months to evaluate the behavior of the bony marginal comb. Results: There is major increase of bony loss for mesial that for distal between 12 and 36 months. Between 24 and 36 months, the increase is equal for mesial that for distal and it is of only 0,05mm. The differences between times are significant all p <0,001. The ANOVA indicates that all the variances are homogeneous and small between 0,18mm and 0,22mm.

    Article visits 150 | PDF visits 98


    Downloads

    Download data is not yet available.
    1. Vroom MG,Sipos P. Effect of surface topography of screw-shaped titanium implants in humans on clinical and radiographic parameters: a 12-year prospective study. Clin Oral Implants Res.2009; 20(11):1231.
    2. Sul YT. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. Int J Nanomedicine.2010; 15(5):87-100.
    3. Esposito M,Grusovin MG,Worthington HV. Interventions for replacing missing teeth: treatment of peri-implantitis. Cochrane Database Syst Rev.2012; 18(5).
    4. Palomares KT,Gleason RE,Mason ZD,Cullinane DM,Einhorn TA,Gerstenfeld LC,Morgan EF. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res.2009;27(9):1123-32.
    5. Lars L Schropp,Lambros L Kostopoulos, and Ann A Wenzel. Bone healing following immediate versus delayed placement of titanium implants into extraction sockets: a prospective clinical study. J Oral Maxillofac Implants.2003;18(2):189-99.
    6. Soardi CM,Bianchi AE,Zandanel E,Spinato S. Clinical and radiographic evaluation of immediately loaded one-piece implants placed into fresh extraction sockets. Quintessence Int.2012; 43(6):449-56.
    7. Vandamme K,Naert I,Geris L,Sloten JV,Puers R,Duyck J. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit. Clin Oral Implants Res.2007; 18(4):471-80.
    8. Wennström JL,Derks J. Is there a need for keratinized mucosa around implants to maintain health and tissue stability. Clin Oral Implants Res.2012; 23 (6):136-46.
    9. Chang M,Wennström JL. Soft tissue topography and dimensions lateral to single implant-supported restorations. A cross-sectional study. Clin Oral Implants Res.2013;24(5):556-62.
    10. Chang M,Wennström JL. Peri-implant soft tissue and bone crest alterations at fixed dental prostheses: a 3-year prospective study. Clin Oral Implants Res.2010; 21(5):527-34.
    11. Chang M,Wennström JL. Bone alterations at implant-supported FDPs in relation to inter-unit distances: a 5-year radiographic study. Clin Oral Implants Res.2010;21(7):735-40.
    12. Chang M,Wennström JL. Longitudinal changes in tooth/single-implant relationship and bone topography: an 8-year retrospective analysis. Clin Implant Dent Relat Res.2012;14(3):388-94.
    13. Esposito M,Grusovin MG,Pellegrino G,Soardi E,Felice P. Safety and effectiveness of maxillary early loaded titanium implants with a novel nanostructured calcium-incorporated surface (Xpeed): 1-year results from a pilot multicenter randomised controlled trial. J Oral Implantol.2012;5(3):241-9.
    14. Esposito M,Maghaireh H,Grusovin MG,Ziounas I,Worthington HV. Soft tissue management for dental implants: what are the most effective techniques? A Cochrane systematic review. J Oral Implantol.2012;5(3):221-38.
    15. Arismendi JA,Castaño AC,Mejia RM,Mesa AL, Castañeda DA, Tobon SI. Evidencia de cambios clínicos y radiográficos en implantes oseointegrados de superficie maquinada y modificada , 3 y 6 meses de seguimiento.Rev Fac Odontol Univ Antioq. 2006;18(1):6-16.
    16. Arismendi JA,Mesa AL,Garcia LP,Salgado JF,Castaño C, Mejia R. Estudio comparativo de implantes de superficie lisa y rugosa .Resultados a 36 meses. Rev Fac Odontol Univ Antioq 2010; 21(2):159-169.
    17. Bressan E. Nanostructured Surfaces of Dental Implants.J. Mol. Sci. 2013; 14: 1918-1931.
    18. ==========================================
    19. DOI: http://dx.doi.org/10.22490/24629448.1043
    Sistema OJS 3.4.0.5 - Metabiblioteca |