Bacterial coinfections in hospitalized patients diagnosed with COVID-19: a narrative literature review
Coinfecciones bacterianas en pacientes hospitalizados con diagnóstico de COVID-19: una revisión narrativa de literatura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.
Furthermore, the authors keep their property intellectual rights over the articles.
Show authors biography
Introduction: In December 2019, an outbreak of pneumonia caused by SARS-CoV-2 emerged, triggering a global health crisis. Objective: To analyze the available literature evidence on bacterial coinfections in hospitalized patients with COVID-19, identifying the most frequent bacterial pathogens and the observed resistance profiles. Methodology: A narrative literature review was conducted in electronic databases between the years 2021 and 2023. Twenty-two studies that met the inclusion criteria were selected. Results: The main comorbidities in patients with COVID-19 include hematological diseases, hypertension, respiratory diseases, and cancer. Regarding bacterial coinfections, the most prevalent microorganisms were found to be Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter spp, and Acinetobacter baumannii among Gram-negative bacteria, and Staphylococcus aureus, Enterococcus sp., and Streptococcus pneumoniae among Gram-positive bacteria. Conclusions: The altered immune response in these patients increases susceptibility to secondary infections, while the excessive use of antimicrobials raises the risk of multidrug-resistant infections and worse clinical outcomes. Therefore, the need for effective treatment and infection control strategies is emphasized, as well as strict regulation and surveillance of antimicrobials.
Article visits 17 | PDF visits 21
Downloads
REFERENCIAS
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P. A novel coronavirus from patients with pneumonia in China, 2019. NEJM AI. 2020;382(8): 727-733. DOI: 10.1056/NEJMoa2001017.
2. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3): 181-192. DOI: 10.1038/s41579-018-0118-9.
3. Malhotra Y, Rossberg MC, Bajaj K, Shtern A, Moore RM. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vertical transmission in neonates born to mothers with coronavirus disease 2019 (COVID-19) pneumonia. Obstet Gynecol. 2020;136(3): 632-633. DOI: 10.1097/AOG.0000000000003926.
4. Li W, Moore M, Vasilieva N, Sui J, Wong S, Berne M, Somasundaran M, Sullivan J, Luzuriaga K, Greenough T, Choe H. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nat. 2003;426(6965): 450-454. DOI: 10.1038/nature02145.
5. Qian Z, Travanty E, Oko L, Edeen K, Berglund A, Wang J, Ito Y, Holmes K, Mason R. Innate immune response of human alveolar type ii cells infected with severe acute respiratory syndrome–coronavirus. Am J Respir Cell Mol Biol. 2013;48(6): 742-748. DOI: 10.1165/rcmb.2012-0339OC.
6. Yang H, Zhang Y, Yang M, Huang X. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2. Eur J Respir Med. 2020;56(3): 1-8. DOI: 10.1183/13993003.00524-2020.
7. Chan J, Yuan S, Kok K, To K, Chu H, Yang J, Xing F, Liu J, Yip C, Poon R, Tsoi H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet. 2020;395(10223):514-523. DOI: 10.1016/S0140-6736(20)30154-9.
8. Kohanski M, Lo L, Waring M. Review of indoor aerosol generation, transport, and control in the context of COVID‐19. Int Forum Allergy Rhinol. 2020;10(10): 1173-1179. DOI:1173-1179. 10.1002/alr.22661.
9. World Health Organization. Coronavirus disease 2019 (COVID-19): Situation report, 51. [Internet]. [Accesado en 2023 mayo 23]. Disponible en: https:// www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.
10. Johns Hopkins University & Medicine. COVID-19 Map [Internet]. [Accesado en 2023 mayo 23]. Johns Hopkins Coronavirus Resource Center. 2023. Disponible en: https://coronavirus.jhu.edu/map.html.
11. International Committee on Taxonomy of Viruses (ICTV). [Internet]. [Accesado 10 marzo de 2023] Disponible en: https://talk.ictvonline.org/ taxonomy/.
12. Weiss S, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4): 635-664. DOI: 10.1128/mmbr.69.4.635-664.2005.
13. Oude B, Sikkema S, Nieuwenhuijse F, Molenaar J, Munger E, Molenkamp R, Van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. BioRxiv. 2020; 1-35. DOI: 10.1101/2020.09.01.277152.
14. McAloose D, Laverack M, Wang L, Killian L, Caserta C, Yuan F, Mitchell K, Queen K, Mauldin R, Cronk D, Bartlett L. From people to Panthera: Natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. MBio. 2020;11(5):10-128. DOI: 10.1128/mBio.02220-20.
15. Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol. 2022;40(4): 485-491. DOI: 10.1016/j.ijmmb.2022.07.005.
16. Giner J, Villanueva-Saz S, Tobajas A, Pérez M, González A, Verde M, Yzuel A, García-García A, Taleb V, Lira-Navarrete E, Hurtado-Guerrero R. SARS-CoV-2 seroprevalence in household domestic ferrets (Mustela putorius furo). Anim. 2021;11(3):667. DOI: 10.3390/ani11030667.
17. Klaus J, Meli L, Willi B, Nadeau S, Beisel C, Stadler T, ETH SARS-CoV-2 Sequencing Team, Egberink H, Zhao S, Lutz H, Riond B. Detection and genome sequencing of SARS-CoV-2 in a domestic cat with respiratory signs in Switzerland. Viruses. 2021;13(3):496. DOI: 10.3390/v13030496.
18. Hamer S, Pauvolid-Corrêa A, Zecca I, Davila E, Auckland L, Roundy C, Tang W, Torchetti M, Killian M, Jenkins-Moore M, Mozingo K. Natural SARS-CoV-2 infections, including virus isolation, among serially tested cats and dogs in households with confirmed human COVID-19 cases in Texas, USA. BioRxiv. 2020; 8:1-16. DOI: 10.1101/2020.12.08.416339.
19. Gorbalenya E, Baker C, Baric R, de Groot R, Drosten C, Gulyaeva A, Haagmans B, Lauber C, Leontovich A, Neuman B, Penzar D. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. BioRxiv. 2020:1-15.
20. Krammer F. SARS-CoV-2 vaccines in development. Nat. 2020;586(7830):516-527. DOI: 10.1038/s41586-020-2798-3.
21. Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z, Hu Y, Tao Z, Tian J, Pei Y, Yuan M. A new coronavirus associated with human respiratory disease in China. Nat. 2020;579(7798): 265-269. 10.1038/s41586-020-2008-3.
22. Zhou Z, Zhu Y, Chu M. Role of COVID-19 vaccines in SARS-CoV-2 variants. Frontiers in Immunology. 2022;579(7798): 265-269. DOI: 10.1038/s41586-020-2008-3.
23. Kissler S, Tedijanto C, Goldstein E, Grad Y, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Sci.. 2020;368(6493):860-868. DOI: 10.1126/science.abb5793.
24. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet. 2020;395(10224): 565-574. DOI: 10.1016/S0140-6736(20)30251-8.
25. Tian D, Sun Y, Zhou J, Ye Q. The global epidemic of SARS‐CoV‐2 variants and their mutational immune escape. J Med Virol. 2022;94(3):847-857. DOI: 10.1002/jmv.27376
26. World Health Organization (WHO). (2021). Seguimiento de las variantes del SARS-CoV-2. [Internet]. [Accesado 10 marzo de 2023]. Disponible en: https://www.who.int/es/activities/tracking-SARS-CoV-2-variants
27. World Health Organization (WHO). Currently circulating variants of interest (VOIs) as of 27 June 2023. [Internet]. [Accesado 10 marzo de 2023] Disponible en: https://www.who.int/activities/tracking-SARS-CoV-2-variants; https://www.who.int/docs/default-source/coronaviruse/05062023xbb.1.16.pdf?sfvrsn=f1845468_3; https://www.who.int/docs/default-source/coronaviruse/20230620xbb.1.5.pdf?sfvrsn=fff6f686_3
28. Kaila I, Mäkinen J. Desde hace nueve meses Finlandia tiene una vacuna anti Covid-19, pero apoyó a las grandes farmacéuticas. Rev Econ Inst. 2021;23(45):257-264. DOI: 10.18601/01245996.v23n45.12.
29. Petropoulou C, Matamoros F, Cruz EG, Doulos P, Tzanetatos D, Pérez M, Georgakopoulos V, Zafeiris K, Varela G, Mavrogiorgou S, Dimitracopoulou V. Luchas invisibles en tiempos de pandemia. Volumen I. Utopías, distopías, luchas sociales y culturales por la vida en tiempos de pandemia. Mytilene-Puebla: Grupo de Investigación “Ciudades Invisibles” Laboratorio de Geografía Urbana y Planeación Urbana, Departamento de Geografía, Universidad del Mar Egeo, Grecia, & Grupo de Investigación “Subjetividad y Teoría Crítica” Instituto de Ciencias Sociales y Humanidades “Alfonso Vélez Pliego”, Benemérita Universidad Autónoma de Puebla, Mexico. ISBN: 978-618-82533-4-6
30. Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resistance Updates. 2021;1(59):100794. DOI: 10.1016/j.drup.2021.100794.
31. Gebre M, Brito L, Tostanoski L, Edwards D, Carfi A, Barouch D. Novel approaches for vaccine development. Cell. 2021;184(6):1589-603. DOI: 10.1016/j.cell.2021.02.030.
32. Altmann D, Boyton R. COVID-19 vaccination: The road ahead. Sci. 2022;375(6585):1127-1132.
33. Gebre M, Rauch S, Roth N, Gergen J, Yu J, Liu X, Cole A, Mueller S, Petsch B, Barouch D. mRNA vaccines induce rapid antibody responses in mice. npj Vaccines. 2022;7(1):88. DOI: 10.1038/s41541-022-00511-y.
34. Yuan Y, Jiao B, Qu L, Yang D, Liu R. The development of COVID-19 treatment. Front immunol. 2023;26(14):1125246. DOI: 10.3389/fimmu.2023.1125246.
35. Vitiello A, Ferrara F, Troiano V, La Porta R. COVID-19 vaccines and decreased transmission of SARS-CoV-2. Inflammopharmacology. 2021;29(5):1357-1360. DOI: 10.1007/s10787-021-00847-2.
36. Brown A, Won J, Graham R, Dinnon III K, Sims A, Feng J, Cihlar T, Denison M, Baric R, Sheahan T. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiv. Res. 2019;1(169):104541.
37. Chang Y, Tung Y, Lee K, Chen T, Hsiao Y, Chang H, Hsieh T, Su C, Wang S, Yu J, Shih S. Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking. 2020:1-11. DOI: 10.20944/preprints202002.0242.v2.
38. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. International journal of antimicrobial agents. 2020;55(5):105955. DOI: 10.1016/j.ijantimicag.2020.105955.
39. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green L, Lescure X, Nicastri E. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327-2336.
40. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):e474-e484. DOI: 10.1016/S2665-9913(20)30173-9.
41. Gul MH, Htun ZM, Shaukat N, Imran M, Khan A. Potential specific therapies in COVID-19. Ther Adv Respiratory Dis. 2020;14:1-12. DOI: 10.1177/175346662092685.
42. Stasi C, Fallani S, Voller F, Silvestri C. Treatment for COVID-19: An overview. Eur J Pharm. 2020;889(15):1-9. DOI: 10.1016/j.ejphar.2020.173644.
43. Benhamou OM, Geva S, Jacobs M, Drew J, Waldman M, Kalchiem-Dekel O. The use of colchicine in respiratory diseases. Curr Respir Med Rev. 2013;9(5):300-304. DOI: 10.2174/1573398X10666140526235154.
44. Vitiello A, Ferrara F. Colchicine and SARS-CoV-2: management of the hyperinflammatory state. Resp Med. 2021;178:106322. DOI: 10.1016/j.rmed.2021.106322.
45. Yamamoto S, Yancey P, Zuo Y, Ma L, Kaseda R, Fogo A, Ichikawa I, Linton M, Fazio S, Kon V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol.2011;31(12):2856-2864. DOI: 10.1161/ATVBAHA.111.237198.
46. Muñoz Loaiza JD, Infante HS, Pérez Mahecha BS, Herrera Cardona JE, Salamanca DR. Effects of Angiotensin II Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors on COVID-19: A narrative review of the literature. Revista Investig. Salud Univ. Boyacá. 2020;7(2):80-99. DOI: 10.24267/23897325.473.
47. Silva D, Lima C, Magalhães V, Baltazar L, Peres N, Caligiorne R, Moura A, Fereguetti T, Martins J, Rabelo L, Abrahão J. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J Hosp Infect. 2021;113:145-154. DOI: 10.1016/j.jhin.2021.04.001.
48. Bengoechea J, Bamford C. SARS‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID‐19?. EMBO Mol Med. 2020;12(7):e12560. DOI: 10.15252/emmm.202012560.
49. Silva I, Guzmán M, Montes de Oca M, Bacci S, de Abreu F, Villarroel H, Stulin I, Blanco G, Sánchez L, Quevedo J, Arvelo M. C, Valera N, Papa I, Catari J. C, Lopez J. L, Moran B, Cárdenas C, Santucci S, Viloria J. L, García E, Gómez J, , Martinelli A. Prescripción de antibióticos en pacientes hospitalizados con COVID-19 en un hospital privado de Caracas: Estudio retrospectivo. Archivos Venezolanos de Farmacología y Terapéutica [Internet]. 2021;40(4):424-431. Recuperado de: https://www.redalyc.org/articulo.oa?id=55971452015.
50. Elguera-Falcón F, Cumpa-Quiróz R. Mucormicosis en pacientes diabéticos post infección por COVID-19. SPMI. 2020;33(4):176-182. DOI: 10.36393/spmi.v33i4.568.
51. Giralt-Herrera A, Rojas-Velázquez J, Leiva-Enríquez J. Relationship between COVID-19 and Hypertension. Rev haban cienc méd. 2020;19(2):1-11.
52. Petrova D, Salamanca-Fernández E, Barranco M, Pérez P, Moleón J, Sánchez M. La obesidad como factor de riesgo en personas con COVID-19: posibles mecanismos e implicaciones. Atenc prim. 2020;52(7):496-500. DOI: https://doi.org/10.1016/j.aprim.2020.05.003.
53. Garlisi-Torales Luciana Daniela, Gonzalez Juan Adrián, Herman-Kaspari Carmen Adriana, Aveiro-Róbalo Telmo Raul, Valladares-Garrido Mario J.. Impacto de la virtualización de la educación médica en el rendimiento académico en 2020. Rev Cub Med Mil [Internet]. 2022 [citado 2024 Mayo 19];51(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572022000200007&lng=es. Epub 01-Jun-2022.
54. Cortés J, Nocua-Báez L, Díaz-Brochero C, Cuervo Maldonado S. Respuesta inmunológica a la vacunación y riesgo de COVID-19 en adultos con neoplasias hematológicas. Rev Chilena Infectol. 2023;40(3):228-235. DOI: 10.4067/s0716-10182023000300228.
55. Bretagne S, Sitbon K, Botterel F, Dellière S, Letscher-Bru V, Chouaki T, Bellanger A, Bonnal C, Fekkar A, Persat F, Costa D. COVID-19-associated pulmonary aspergillosis, fungemia, and pneumocystosis in the intensive care unit: a retrospective multicenter observational cohort during the first French pandemic wave. Microbiol spectrum. 2021;9(2):e01138-21. DOI: 10.1128/Spectrum.01138-21.
56. Garcia-Vidal C, Sanjuan G, Moreno-García E, Puerta-Alcalde P, Garcia-Pouton N, Chumbita M, Fernandez-Pittol M, Pitart C, Inciarte A, Bodro M, Morata L. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. C Microbiol Infect. 2021;27(1):83-88. DOI: 10.1016/j.cmi.2020.07.041.
57. Kaal A, Snel L, Dane M, van Burgel N, Ottens T, Broekman W, El Bouazzaoui L, Kolfschoten N, Schippers E, Steyerberg E, Meziyerh S. Diagnostic yield of bacteriological tests and predictors of severe outcome in adult patients with COVID-19 presenting to the emergency department. Emergency Medicine Journal. 2021;38(9):685-691.
58. Lardaro T, Wang A, Bucca A, Croft A, Glober N, Holt D, Musey P, Peterson K, Trigonis R, Schaffer J, Hunter B. Characteristics of COVID‐19 patients with bacterial coinfection admitted to the hospital from the emergency department in a large regional healthcare system. Journal of Medical Virology. 2021;93(5):2883-2889. DOI: 10.1002/jmv.26795.
59. León L, Calderón M, Gutiérrez A. Análisis de mortalidad y comorbilidad por Covid-19 en Cuba. Rev cubana med [Internet]. 2021 [citado 2024 Mayo 19]; 60(2). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232021000200004&lng=es. Epub 01-Jun-2021.
60. Plasencia-Urizarri M, Aguilera-Rodríguez R, Almaguer-Mederos L. Comorbidities and clinical severity of COVID-19: systematic review and meta-analysis. Rev haban cienc méd [Internet]. 2020 [citado 2024 Mayo 19];19(Suppl 1): . Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2020000400002&lng=es. Epub 10-Jun-2020.
61. Organización Panamericana de la Salud (OPS). COVID-19 y comorbilidades en las Américas: Herramienta práctica para estimar la población con mayor riesgo y riesgo alto de COVID-19 grave debido a afecciones de salud subyacentes en las Américas. 2021. p. 1- 3. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/53253/OPSIMSPHECOVID-19210003_spa.pdf?sequence=1&isAllowed=y
62. Villafuerte K, Fienco C, Cevallos I, Castillo L. Covid-19 asociado a comorbilidad en adultos de Latinoamérica. Revista Científica Arbitrada Multidisciplinaria Pentaciencias. 2023;5(3):471-493. Disponible en: http://www.editorialalema.org/index.php/pentaciencias/article/view/565
63. Monté Cerero L, Martínez Casanueva R. Microorganismos aislados en pacientes ingresados. Hospital" Salvador Allende", La Habana. Febrero a junio de 2015. Rev hab cienc méd. 2017;16(4):552-563. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/artic le/view/1326/1883
64. Cox MJ, Loman N, Bogaert D, O'Grady J. Co-infections: potentially lethal and unexplored in COVID-19. The Lancet Microbe. 2020;1(1):e11. DOI: 10.1016/S2666-5247(20)30009-4.
65. Olsen SJ, Azziz-Baumgartner E, Budd AP, Brammer L, Sullivan S, Pineda RF, Cohen C, Fry AM. Decreased influenza activity during the covid-19 pandemic—United States, Australia, Chile, and South Africa, 2020. Am J Transplant. 2020;20(12):3681-3685. DOI: 10.1111/ajt.16381.
66. Vargas-Ponce KG, Salas-López JA, Llanos-Tejada FK, Morales-Avalos A. Coinfección de COVID-19 e influenza: Reporte de cinco casos en un hospital peruano. Revista de la Facultad de Medicina Humana. 2020;20(4):738-742. DOI: 10.25176/rfmh.v20i4.3158.
67. Pemán J, Ruiz-Gaitán A, García-Vidal C, Salavert M, Ramírez P, Puchades F, García-Hita M, Alastruey-Izquierdo A, Quindós G. Fungal co-infection in COVID-19 patients: Should we be concerned?. Rev Iberoam Micol. 2020;37(2):41-46. DOI: 10.1016/j.riam.2020.07.001.
68. Sharifipour E, Shams S, Esmkhani M, Khodadadi J, Fotouhi-Ardakani R, Koohpaei A, Doosti Z, Ej Golzari S. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis. 2020;20(1):1-7. DOI: 10.1186/s12879-020-05374-z.
69. Fattorini L, Creti R, Palma C, Pantosti A. Bacterial coinfections in COVID-19: an underestimated adversary. Ann Ist Super Sanita. 2020;56(3):359-364. DOI: 10.4415/ANN_20_03_14.
70. Andrade VM, Timoteo PAD. Epidemiological profile of fungal and bacterial co-infections in patients with COVID-19. Rev. Contemp. 2022;2(3):184-201. DOI: 10.56083/RCV2N3-009.
71. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H, Jeda A, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K. Bacterial co‐infections with SARS‐CoV‐2. IUBMB life. 2020;72(10):2097-111. DOI: 10.1002/iub.2356.
72. Vidal LS, Silva VH. Infecções de sítio cirúrgico relacionadas às cirurgias ortopédicas com inserção de implantes. [Tesis pregrado]. Goiás: Repositório Escola de Ciências Sociais e da Saúde. Pontifícia Universidade Católica de Goiás; 2020.
73. Abelenda-Alonso G, Rombauts A, Gudiol C, Meije Y, Ortega L, Clemente M, Ardanuy C, Niubó J, Carratalà J. Influenza and bacterial coinfection in adults with community-acquired pneumonia admitted to conventional wards: risk factors, clinical features, and outcomes. InOpen forum infectious diseases 2020; (3).US: Oxford University Press. DOI: 10.1093/ofid/ofaa066.
74. Al-Hadidi S, Alhussain H, Abdel Hadi H, Johar A, Yassine H, Thani A, Eltai N. The spectrum of antibiotic prescribing during COVID-19 pandemic: a systematic literature review. Microbial Drug Resistance. 2021;27(12):1705-1725. DOI: 10.1089/mdr.2020.06191705.
75. Morris D, Cleary D, Clarke S. Secondary bacterial infections associated with influenza pandemics. Front Microbiol. 2017;8:1041. DOI: 10.3389/fmicb.2017.01041.
76. Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care in patients with COVID‐19: a systematic review and meta‐analysis of observational studies. Anaesthesia. 2020;75(10):1340-1349. DOI: 10.1111/anae.15201.
77. Vaillancourt M, Jorth P. The unrecognized threat of secondary bacterial infections with COVID-19. MBio. 2020;11(4):e01806-20. DOI: 10.1128/mbio.01806-20.
78. Paparoupa M, Schröder A, Braunsteiner J, Addo M, Lütgehetmann M, Roedl K, Kluge S, Ondruschka B, Wichmann D. The effects of SARS-CoV-2 virus type and of vaccination status on causes of death over the course of the COVID-19 pandemic. Dtsch Arztebl Int. 2022;119(35-36):607-608. DOI: 10.3238/arztebl.m2022.0255.
79. Orozco-Hernández J, Montoya-Martínez J, Pacheco-Gallego M, Céspedes-Roncancio M, Porras-Hurtado G. Coinfección por SARS-CoV-2 y rinovirus-enterovirus en una paciente adulta joven críticamente enferma en Colombia. Biomedica.2020;40:34–43. DOI: 10.7705/biome dica.5516. 8.
80. Galindo J, Lutz J, Izquierdo M, Parra K, Prieto L, Carrillo J. Characteristics and Clinical Course of Adult in-Patients With SARS-CoV-2 Pneumonia in Bogotá, Colombia. DOI: 10.21203/rs.3.rs-144087/v2.
81. Sánchez‐Duque J, Orozco‐Hernández J, Marín‐Medina D, Cvetkovic‐Vega A, Aveiro‐Róbalo T, Mondragon‐Cardona A, Failoc‐Rojas V, Gutiérrez‐Ocampo E, Villamizar‐Peña R, Henao‐Martínez J, Arteaga‐Livias K. Are we now observing an increasing number of coinfections between SARS‐CoV‐2 and other respiratory pathogens?. Journal of Medical Virology. 2020;92(11):2398-2400. DOI: 10.1002/jmv.26089.
82. Cuadrado-Payán E, Montagud-Marrahi E, Torres-Elorza M, Bodro M, Blasco M, Poch E, Soriano A, Piñeiro GJ. SARS-CoV-2 and influenza virus co-infection. Lancet (London, England). 2020;395(10236):e84. DOI: 10.1016/S0140-6736(20)31052-7
83. Cataño-Correa J, Cardona-Arias J, Porras Mancilla J, García M. Bacterial superinfection in adults with COVID-19 hospitalized in two clinics in Medellín-Colombia, 2020. PloS one. 2021;16(7):e0254671. DOI: 10.1371/journal.pone.0254671.
84. Chen X, Liao B, Cheng L, Peng X, Xu X, Li Y, Hu T, Li J, Zhou X, Ren B. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020;104:7777-7785. DOI: 10.1007/s00253-020-10814-6.
85. Langford B, So M, Raybardhan S, Leung V, Westwood D, MacFadden D, Soucy J, Daneman N. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clinical microbiology and infection. 2020;26(12):1622-1629. DOI: 10.1016/j.cmi.2020.07.016.
86. Shiralizadeh S, Keramat F, Hashemi SH, Majzoobi MM, Azimzadeh M, Alikhani MS, Karami P, Rahimi Z, Alikhani MY. Investigation of antimicrobial resistance patterns and molecular typing of Pseudomonas aeruginosa isolates among Coronavirus disease-19 patients. BMC microbiol. 2023;23(1):1-12. DOI: 10.1186/s12866-023-02825-w.
87. Grasselli G, Scaravilli V, Mangioni D, Scudeller L, Alagna L, Bartoletti M, Bellani G, Biagioni E, Bonfanti P, Bottino N, Coloretti I. Hospital-acquired infections in critically ill patients with COVID-19. Chest. 2021;160(2):454-465. DOI: 10.1016/j.chest.2021.04.002.
88. Cantón R, Gijón D, Ruiz-Garbajosa P. Antimicrobial resistance in ICUs: an update in the light of the COVID-19 pandemic. Current opinion in critical care. 2020;26(5):433-441. DOI: 10.1097/MCC.0000000000000755.
89. Zuluaga-Arias H, Alkhakany M, Younus M, Sefiani H, Caro-Rojas A, Al-Zubiedi S, Albalawi W, Alshammari T. Impact of risk communication on patient’s safety during the pandemic. Therapeutic Advances in Drug Safety. 2023;14:1-11. DOI: 10.1177/20420986231159752.
90. Zhou P, Liu Z, Chen Y, Xiao Y, Huang X, Fan XG. Bacterial and fungal infections in COVID-19 patients: a matter of concern. Infect Control Hosp Epidemiol. 2020 Sep;41(9):1124-5. DOI: 10.1017/ice.2020.156
91. Lynch C, Mahida N, Gray J. Antimicrobial stewardship: a COVID casualty?. Journal of Hospital Infection. 2020;106(3):401-403. DOI: 10.1016/j.jhin.2020.10.002.
92. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. A declaração PRISMA 2020: diretriz atualizada para relatar revisões sistemáticas. Revista Panamericana de Salud Publica/Pan American Journal of Public Health. 2022;46:e112. DOI: 10.26633/RPSP.2022.112.
93. Charalampous T, Alcolea-Medina A, Snell L, Williams T, Batra R, Alder C, Telatin A, Camporota L, Meadows C, Wyncoll D, Barrett N. Evaluating the potential for respiratory metagenomics to improve treatment of secondary infection and detection of nosocomial transmission on expanded COVID-19 intensive care units. Genome Medicine. 2021;13(1):1-16. DOI: 10.1186/s13073-021-00991-y.
94. Ahava MJ, Kortela E, Forsblom E, Pätäri-Sampo A, Friberg N, Meretoja A, Kivivuori SM, Lappalainen M, Kurkela S, Järvinen A, Jarva H. Low incidence of severe bacterial infections in hospitalised patients with COVID-19: A population-based registry study. Infectious Diseases. 2023 Feb 1;55(2):132-141. DOI: 0.1080/23744235.2022.2138963.
95. Vlad ND, Cernat RC, Carp S, Mitan R, Dumitru A, Nemet C, Voidăzan S, Rugină S, Dumitru IM. Predictors of carbapenem-resistant Enterobacteriaceae (CRE) strains in patients with COVID-19 in the ICU ward: a retrospective case–control study. Journal of International Medical Research. 2022;50(10):1-14. DOI: 10.1177/03000605221129.
96. La Bella G, Lopizzo T, Lupo L, Angarano R, Curci A, Manti B, La Salandra G, Mosca A, De Nittis R, Arena F. In vitro activity of ceftazidime/avibactam against carbapenem-nonsusceptible Klebsiella penumoniae isolates collected during the first wave of the SARS-CoV-2 pandemic: A Southern Italy, multicenter, surveillance study. J Glob Antimicrob Resist. 2022;31:236-238. DOI: 10.1016/j.jgar.2022.09.013.
97. Cesca L, Conversano E, Vianello F, Martelli L, Gualeni C, Bassani F, Brugnara M, Rubin G, Parolin M, Anselmi M, Marchiori M. How Covid-19 changed the epidemiology of febrile urinary tract infections in children in the emergency department during the first outbreak. BMC pediatrics. 2022;22(1):1-8. DOI: 10.1186/s12887-022-03516-7.
98. Zuglian G, Ripamonti D, Tebaldi A, Cuntrò M, Riva I, Farina C, Rizzi M. The changing pattern of bacterial and fungal respiratory isolates in patients with and without COVID-19 admitted to intensive care unit. BMC Infect Dis. 2022;22(1):1-5. DOI: 10.1186/s12879-022-07176-x.
99. Adzic-Vukicevic T, Velickovic J, Radovanovic-Spurnic A, Velickovic D, Milenkovic S, Petrovic F, Micic J, Dragutinovic N. Fatal invasive candidiasis in COVID-19 patient with severe bleeding and extensively drug-resistant Klebsiella enterobacter. J Infect Dev Ctries. 2022;16(06):1025-1029. DOI: 10.3855/jidc.16256.
100. Paparoupa M, Aldemyati R, Roggenkamp H, Berinson B, Nörz D, Olearo F, Kluge S, Roedl K, de Heer G, Wichmann D. The prevalence of early‐and late‐onset bacterial, viral, and fungal respiratory superinfections in invasively ventilated COVID‐19 patients. J Med Virol. 2022;94(5):1920-1925. DOI: 10.1002/jmv.27548.
101. Gysin M, Acevedo CT, Haldimann K, Bodendoerfer E, Imkamp F, Bulut K, Buehler PK, Brugger SD, Becker K, Hobbie SN. Antimicrobial susceptibility patterns of respiratory Gram-negative bacterial isolates from COVID-19 patients in Switzerland. Ann Clin Microbiol Antimicrob. 2021;20(1):1-10. DOI: 10.1186/s12941-021-00468-1.
102. Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, Loubet P, Lavigne JP, Pantel A, Sotto A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol. 2022;12:1048633. DOI: 10.3389/fcimb.2022.1048633.
103. Dai R, Wu H, Liu G, Shen L, Geng Y, Zhang S, Zhou H, Jiang C, Gong J, Fan X, Ji C. Investigation of bacterial and fungal population structure on environmental surfaces of three medical institutions during the COVID-19 pandemic. Front Microbiol. 2023 9;14:1089474. DOI: 10.3389/fmicb.2023.1089474.
104. Zhou Y, Lu S, Wei X, Hu Y, Li H, Wang J, Lin Y, Li M, Wang M, Ma J, Zhu Z. Metatranscriptomic Analysis Reveals Disordered Alterations in Oropharyngeal Microbiome during the Infection and Clearance Processes of SARS-CoV-2: A Warning for Secondary Infections. Biomolecules. 2022;13(1):6. DOI: 10.3390biom13010006.
105. Bhat K A, Madi D, Bhat S, Mary T, Shenoy Mulki S, Kotian H. Profile of Secondary Bacterial and Fungal Infections in Hospitalized COVID-19 Patients in a Tertiary Care Centre. Infection and Drug Resistance. 2022;1:5705-5714.
106. Yamagishi T, Arakawa N, Toyoguchi S, Mizuno K, Asami Y, Yamanaka Y, Yamamoto H, Tsuboi K. Peritonsillar abscess caused by Prevotella bivia during home quarantine for coronavirus disease 2019: Case report. Medicine. 2022;101(21).e29469. DOI: 10.1097/MD.0000000000029469.
107. Sinto R, Lie K, Setiati S, Suwarto S, Nelwan E, Djumaryo D. Blood culture utilization and epidemiology of antimicrobial-resistant bloodstream infections before and during the COVID-19 pandemic in the Indonesian national referral hospital. Antimicrob Resist Infect Control. 2022;11(1):1-12. DOI: 10.1186/s13756-022-01114-x.
108. Aydemir O, Aydemir Y, Şahin E, Şahin F, Koroglu M, Erdem A. Secondary bacterial infections in patients with coronavirus disease 2019-associated pneumonia. Rev Assoc Med Bras. 2022;68(2):142-146. DOI: 10.1590/1806-9282.20210745.
109. Bahçe YG, Acer Ö, Özüdoğru O. Evaluation of bacterial agents isolated from endotracheal aspirate cultures of Covid-19 general intensive care patients and their antibiotic resistance profiles compared to pre-pandemic conditions. Microb Pathog. 2022;164(1):105409. DOI: 10.1016/j.micpath.2022.105409.
110. Mutua JM, Njeru JM, Musyoki AM. Multidrug resistant bacterial infections in severely ill COVID-19 patients admitted in a national referral and teaching hospital, Kenya. BMC Infect Dis. 2022;22(1):1-12. DOI: 10.1186/s12879-022-07885-3.
111. Alcántar-Curiel MD, Huerta-Cedeño M, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Hernández-Medel ML, Zavala-Pineda M, Morales-Gil MÁ, Hernández-Guzmán VA, Bolaños-Hernández MI, Giono-Cerezo S. Gram-negative ESKAPE bacteria bloodstream infections in patients during the COVID-19 pandemic. PeerJ. 2023;11:e15007. DOI: DOI 10.7717/peerj.15007.
112. Ramos F, Atallah F, Souza M, Ferreira E, Machado F, Freitas F. Determinants of death in critically ill COVID-19 patients during the first wave of COVID-19: a multicenter study in Brazil. J. bras. pneumol. 2022;48(5). DOI: 10.36416/1806-3756/e20220083.
113. Crosby J, Semon S, Ganti S, Klauber-Choephel E, Abraham J. Mycoplasma pneumoniae COVID-19 Delta Variant Co-Infection Mimicking COVID-19 ARDS. J Investig Med High Impact Case Rep. 2022;10:1-3. DOI: 10.1177/232470962211299.
114. Gómez B, Pazmiño J, Quinde G, Viejó J, Amaguaña M, Neira É, Rodríguez F, Montaño L, Pazmiño K. Multidrug-resistant Klebsiella pneumoniae in a patient with SARS-Cov-2 pneumonia in an intensive care unit in Guayaquil, Ecuador: a case report. Am J Case Rep. 2022;23:e936498-1- e936498-7. DOI: 10.12659/AJCR.936498.