Skip to main navigation menu Skip to main content Skip to site footer

Contrast between a mathematical model and the bioreduction process of Cr(VI) by consortia of bacteria isolated from wastewater of the Pasto River

Contraste entre un modelo matemático y el proceso de biorreducción de Cr(VI) por consorcios de bacterias aisladas de agua residual del Rio Pasto




Section
Artículo Original

How to Cite
Pinta Melo, J., Guerrero Ceballos, D. L., Cerón Gómez, M. O., Fernández Izquierdo, P., Ibarguen Mondragón, E., & Burbano Rosero, E. M. (2023). Contrast between a mathematical model and the bioreduction process of Cr(VI) by consortia of bacteria isolated from wastewater of the Pasto River. NOVA, 21(40), 141-164. https://doi.org/10.22490/24629448.6921

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Introduction. The versatile metabolism of microorganisms allows biodegradation of a wide variety of contaminants; however, the increasing scale of the industry exceeds its pollutant processing capacity. Due to its high toxicity, hexavalent chromium Cr(VI) is one of the heavy metals with the greatest global dissemination and concern. There are numerous investigations focused on proposing treatments to purify the different ecosystems affected with this metal; however, knowledge about various microorganisms from the same source that could help solve this problem is restricted. Objetive. To evaluate the efficiency in the reduction of Cr(VI) of bacterial consortia (B. thuringiensis, B. amyloliquefaciens and Paenibacillus sp.) in a Batch type treatment, using municipal wastewater from Río Pasto as a substrate. Methodology. A mathematical model was formulated that reliably predicted the behavior of the consortia, in relation to their growth and reduction percentage, the results of the simulations were compared with experimental data to select the consortium with the best Cr(VI) reduction results. ). Subsequently, its efficiency in the reduction of Cr(VI) was determined, using unsterilized residual river water as a substrate. Results. The statistical analyzes highlighted the absence of statistically significant differences in the reduction percentages between the consortia. However, with the selected culture, a reduction percentage of 91% was presented in 156 hours. Conclusion. The results found in this research are promising for their application in the improvement of treatment practices for Cr(VI) bioremediation.


Article visits 150 | PDF visits 122


Downloads

Download data is not yet available.
  1. Corrales L, Sánchez L, Sánchez Cortes P, Sánchez León A, Sánchez Quintero V, Zárate D. Estudio piloto de aislamiento y fenotipificación de bacterias que participan en los procesos de biolixiviación, en las zonas mineras del Departamento de Boyacá. NOVA. 2006; 4(5).
  2. https://doi.org/10.22490/24629448.348
  3. Sarkar P, Chourasia R. Bioconversion of organic solid wastes into biofortified compost using a microbial consortium. International Journal of Recycling of Organic Waste in Agriculture. 2017; 6(4): p. 321 - 334.
  4. https://doi.org/10.1007/s40093-017-0180-8
  5. Huang H, Zhao Y, Xu Z, Ding Y, Zhou X, Dong M. A high Mn(II)-toletance strain, Bacillus thuringiensis HM7, isolated from manganese ore and its biosorption characteristics. PeerJ - Journal of Life and Environmental Sciences. 2020; 8(2020): p. 1 - 24.
  6. https://doi.org/10.7717/peerj.8589
  7. Kalsoom W, Batool A, Din G, DIn SU, Jamil J, Hasan F, et al. Isolation and screening of chromium resistant bacteria from industrial waste for bioremediation purposes. Brazilian Journal of Biology. 2021; 83(2021).
  8. https://doi.org/10.1590/1519-6984.242536
  9. Pinta-Melo J, Guerrero-Ceballos L, Ibargüen-Mondragón E, Fernández-Izquierdo P, Gómez Arrieta JD, Burbano-Rosero EM. Tolerance and reduction of Cr(VI) by Bacillus amyloliquefaciens, B. thuringiensis and Paenibacillus sp., isolated from Pasto River. Latin American Journal of Development. 2022; 4(1): p. 272-297.
  10. https://doi.org/10.46814/lajdv4n1-020
  11. Soto C, Gutiérrez S, Rey-León A, González-Rojas E. Biotransformación de metales pesados presentes en lodos ribereños de los ríos Bogotá y Tunjuelo. NOVA. 2010; 8(14).
  12. https://doi.org/10.22490/24629448.450
  13. Góngora E, Cadena CD, Dussán J. Toxic metals and associated sporulated bacteria on Andean hummingbird feathers. Environmental Science and Pollution Research. 2016; 23(22): p. 22968 - 22979.
  14. https://doi.org/10.1007/s11356-016-7506-3
  15. Mora Collazos A. Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova scientia. 2016; 8(17): p. 361 - 378.
  16. https://doi.org/10.21640/ns.v8i17.655
  17. Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 2022; 13(3): p. 4923 - 4938.
  18. https://doi.org/10.1080/21655979.2022.2037273
  19. Vásquez Perea Y, Villamil Poveda J, Sánchez Leal L, Lancheros Diaz A. Evaluación de un sistema de medio fijo como soporte para una película microbiana capaz de reducir Cr (VI) de lodos residuales de curtiembres. NOVA. 2014; 12(21).
  20. https://doi.org/10.22490/24629448.996
  21. Bharagava RN, Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety. 2018; 147: p. 102 - 109.
  22. https://doi.org/10.1016/j.ecoenv.2017.08.040
  23. Maldaner J, Steffen GP, Missio EL, Saldanha CW, de Morais RM, Nicoloso FT. Tolerance of Trichoderma isolates to increasing concentrations of heavy metals. International Journal of Environmental Studies. 2021; 78(2): p. 185 - 197.
  24. https://doi.org/10.1080/00207233.2020.1778290
  25. Martínez Buitrago SY, Romero Coca JA. Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: Un análisis de su competitividad. Revista Facultad De Ciencias Económicas. 2017; 26(1): p. 113 -124.
  26. https://doi.org/10.18359/rfce.2357
  27. Alzate Tejada AM. Anexo1. En Diagnóstico ambiental del sector curtiembre en Colombia: Proyecto de gestión ambiental en la industria de curtiembre. Colombia: Centro Nacional de Producción más limpia y Tecnologías Ambientales.; 2004. p. 7-9.
  28. Guerrero Ceballos , Pinta Melo , Fernandez Izquierdo P, Ibarguen Mondragón E, Hidalgo Bonilla P, Burbano Rosero E. Eficiencia en la reducción de cromo por una bacteria silvestre en un tratamiento tipo batch utilizando como sustrato agua residual del municipio de Pasto, Colombia. Universidad y salud. 2017; 19(1): p. 102-115.
  29. https://doi.org/10.22267/rus.171901.74
  30. Otero ID. Remoción de la materia orgánica de las aguas residuales vertidas al Río Pasto con bacterias productoras de polihidroxialcanoatos. Trabajo de grado presentado como requisito parcial para optar al título de Biólogo. Pasto: Universidad de Nariño, Colombia.
  31. Lace A, Ryan D, Bowkett M, Cleary J. Chromium monitoring in water by colorimetry using optimised 1,5-diphenylcarbazide method. Environmental Research and Public Health. 2019; 16(10): p. 1803.
  32. https://doi.org/10.3390/ijerph16101803
  33. Murray JD. Mathematical Biology I: An Introduction; 2003.
  34. https://doi.org/10.1007/b98869
  35. Trinidad Bello A. Modelos de crecimiento en biología, su significado biológico y selección del modelo por su ajuste. Iztapalapa - México:, División de Ciencias Básicas e Ingenierías.
  36. Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, et al. Modelling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. The ISME Multidisciplinary Journal of Microbial Ecology. 2019; 13(2019): p. 494 - 508.
  37. https://doi.org/10.1038/s41396-018-0288-5
  38. American Public Health; Association, American Water Works; Federation, Water Environment. Chromiun 117A Hexavalente chromiun. En Health AP, Association AWW, Federation WE. Standards Methods for the examination of water and wastewater.; 1999. p. 271.
  39. Niño Camacho L, Torres Sáenz R. Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas de Pseudomonas putida biodegradadoras de fenol. Revista ION. 2010; 23(1): p. 41 - 46.
  40. Sereshti H, Vasheghani Farahani M, Baghdadi M. Trace determination of chromium (VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extraction and UV-vis spectrophotometry. Talanta. 2016; 146: p. 662 - 669.
  41. https://doi.org/10.1016/j.talanta.2015.06.051
  42. Rinaldo J, Anand Prem R. Bioreactor level optimization of chromium(VI) reduction through Pseudomonas putida APRRJVITS11 and sustainable remediation of pathogenic DNA in wate. Beni-Suef University Journal of Basic and Applied Sciences. 2022; 11(2022): p. 1 - 8.
  43. https://doi.org/10.1186/s43088-021-00183-y
  44. Arroyo Núñez MG. Tratamiento de disoluciones que contienen cromo hexavalente mediante electrocoagulación con ánodos de hierro. Tesis doctoral para optar al grado de Doctor en Ingeniería química y Nuclear. Valéncia.
  45. López Vázquez CM, Buitrón Méndez G, Garcia HA, Cervantes Carrillo FJ. Tratamiento biológico de aguas residuales: Principios, modelación y diseño: IWA Publishing; 2017.
  46. https://doi.org/10.2166/9781780409146
  47. Banerjee S, Misra A, Chaudhury S, Dam B. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. Journal of hazardous materials. 2019;: p. 215 - 223.
  48. https://doi.org/10.1016/j.jhazmat.2018.12.038
  49. Castro Echavez FL, Marín Leal JC. Comparación de la ecotoxicidad por metales pesados sobre bacterias heterótrofas de dos sitios contrastados del lago de maracaibo (Venezuela). Revista Facultad De Ciencias Básicas. 2018; 1(1): p. 9 - 17.
  50. https://doi.org/10.18359/rfcb.2825
  51. Hossain N, Rahman M. Antagonistic activity of antibiotic producing Streptomyces sp. against fish and human pathogenic bacteria. Brazilian Archives of Biology and Technology. 2014; 57(2): p. 233 - 237.
  52. https://doi.org/10.1590/S1516-89132014000200011
  53. Atlas RM, Bartha R. Capitulo 3: Interacciones entre poblaciones microbianas. En Ecología microbiana y microbiología ambiental. Madrid: Pearson-Addison Wesley; 2002. p. 64 - 81.
  54. Ginovart M, Tutusaus A, Mas MT. Agent-based modeling: microbial canibalism. Modelling in Science Education and Learning. 2019; 12(2): p. 5 - 46.
  55. https://doi.org/10.4995/msel.2019.10975
  56. Roestorff MM, Chirwa EM. Comparison of the performance of Chlorococcum ellipsoideum and Tetradesmus obliquus as a carbon source for reduction of Cr (VI) with bacteria. Chemical Engineering Transactions. 2018; 70(2018): p. 463 - 468.
  57. Mbonambi NC, Chirwa EM. Biological remediation of chromium (VI) in aquifer media columns. Chemical Engineering Transactions. 2019; 76(2019): p. 1333 - 1338.
  58. Ontañon OM, Fernandez M, Agostini E, González PS. Identification of the main mechanisms involved in the tolerance and bioremediation of Cr(VI) by Bacillus sp. SFC 500-1E. Environmental Science and Pollution Research. 2018; 25(16): p. 16111 - 16120.
  59. https://doi.org/10.1007/s11356-018-1764-1
  60. Dong G, Wang Y, Gong L, Wang M, Wang H, He N, et al. Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochemical Engineering Journal. 2013; 70(2013): p. 166 - 172.
  61. https://doi.org/10.1016/j.bej.2012.11.002
  62. Kafilzadeh F, Saberifard S. Isolation and identification of chromium (VI)-resistant bacteria from soltan abad river sediments (Shiraz-Iran). Jundishapur Journal of Health Sciences. 2016; 8(1): p. 41 - 47.
  63. https://doi.org/10.17795/jjhs-33576
  64. Rahman Z, Thomas L. Chemical-assisted microbially mediated chromium (cr) (vi) reduction under the influence of various electron donors, redox mediators, and other additives: An outlook on enhanced Cr(VI) removal. Frontiers in Microbiology. 2021; 11(2021): p. 3503.
  65. https://doi.org/10.3389/fmicb.2020.619766
  66. Narayani M, Vidya Shetty K. Reduction of hexavalent chromium by a novel Ochrobactrum sp.-microbial characteristics and reduction kinetics. Journal of Basic Microbiology. 2014; 54(4): p. 296 - 305.
  67. https://doi.org/10.1002/jobm.201200183
  68. Mohapatra RK, Parhi PK, Thatoi H, Panda CR. Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chemistry and Ecology. 2017; 33(2): p. 114 - 130.
  69. https://doi.org/10.1080/02757540.2016.1275586
  70. Elahi A, Rehman A. Multiple metal resistance and Cr6+ reduction by bacterium, Staphylococcus sciuri A-HS1, isolated from untreated tannery effluent. Journal of King Saud University-Science. 2019; 31(4): p. 1005 - 1013.
  71. https://doi.org/10.1016/j.jksus.2018.07.016
  72. Sandana Mala JG, Sujatha D, Rose C. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research. 2015; 170(2015): p. 235 - 241.
  73. https://doi.org/10.1016/j.micres.2014.06.001
  74. Vélez JA, Quiroz LF, Ruiz OS, Montoya OI, Turrión MB, Ordúz S. Hexavalent chromium-reducing bacteria on biosolids from the San Fernando wastewater treatment plant in Medellín (Colombia). Revista Colombiana de Biotecnología. 2021; 23(1): p. 32 - 45.
  75. https://doi.org/10.15446/rev.colomb.biote.v23n1.94005
Sistema OJS 3.4.0.5 - Metabiblioteca |