Skip to main navigation menu Skip to main content Skip to site footer

Polimorfismos de nucleótido simple en hormonas asociadas al crecimiento muscular en ovinos criollos colombianos

Polimorfismos de nucleótido simple en hormonas asociadas al crecimiento muscular en ovinos criollos colombianos




Section
Artículo Original

How to Cite
Sarmiento Cardenas, P. N., Castro Molina, S. L., Ortiz Sanchez, Y. T., & Ariza Botero, M. F. (2023). Polimorfismos de nucleótido simple en hormonas asociadas al crecimiento muscular en ovinos criollos colombianos. NOVA, 21(40), 57-74. https://doi.org/10.22490/24629448.6916

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Objective. To determine the Single Nucleotide Polymorphisms (SNPs) present in growth hormone (GH) and insulin like growth factor 1 (IGF-1) genes and their association with muscle growth in Colombian Creole hair sheep. Materials and methods. A population of 100 sheep was selected, from three different regions: Andean valleys, Piedemonte Llanero and Córdoba department, subjected to different production systems. Polymorphisms identification was determined by the Polymerase Chain Reaction (PCR) and Single Chain Conformation Polymorphism (SSCP) techniques. Results. AA, AB and BB genotypes were identified for these genes. Allele frequencies were defined for the GH and IGF-1 (IGFov-1, IGF1ov-2 and IGF1ov-3) markers of 58.9, 36.87, 53.76 and 56.81% for allele A, respectively, and 41.41, 63.13, 46.24 and 43.18% for allele B,
respectively. Genotypic frequencies were also determined for each marker at the population level, calculated from the Hardy-Weinberg equilibrium with a Fis correlation analysis. Conclusion. The selected markers present a high level of homology in the selected population, and it was determined that there is a high percentage of heterozygous individuals based on the markers evaluated. 


Article visits 212 | PDF visits 180


Downloads

Download data is not yet available.
  1. Espinal C F, Covaleda H M, Amézquita J E. Cadena de Ovinos y Caprinos en Colombia. Obtenido de Ministerio de Agricultura y Desarrollo Rural, Observatorio Agrocadenas Colombia. 2006; Disponible en: www.agrocadenas.gov.co
  2. Vargas-Bayona J E, Bello D A, Serrano-Novoa C A, Rivera O F. Diversidad de la Cabra en Colombia. Biodiversidad caprina iberoamericana. 2016; 140-143. Disponible en: https://www.researchgate.net/profile/Lenin-Aguirre/publication/325184212_Libro_Diversidad_caprina_Iberoamericana_Capitulo_Recursos_geneticos_caprinos_locales_en_el_Ecuador/links/5afccec30f7e9b98e03e8e4c/Libro-Diversidad-caprina-Iberoamericana-Capitulo-Recursos-geneticos-caprinos-locales-en-el-Ecuador.pdf#page=138
  3. Vergara-Garay O, Llorente E, Ramos L, Bustamante-Yánez M, Simanca-Sotelo J C. Descripción del crecimiento en ovinos criollos utilizando el modelo Brody. Orinoquia. 2016; 20(2), 34-39. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-37092016000200005&lng=en&tlng=es. On-line versión ISSN 0121-3709
  4. https://doi.org/10.22579/20112629.351
  5. Dorado J C. Huertas H R, Rivera M A, Escobar E R. Ovinos Colombianos de Pelo: Alternativa Productiva para el Sur del Departamento del Tolima. CORPOICA, Centro de investigación de Nataima. 2002
  6. Gutierrez JH. (1992). Ovinos. Bogotá: Retina Ltda
  7. Ascue NJ. Diversidad genética de ovinos criollos colombianos (tesis maestría). Colombia Universidad nacional de Colombia; 2013. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/21711/2013-Nini_Johana_Vivas_Ascuet.pdf?sequence=1&isAllowed=y
  8. Faria LC. Estudo genético quanitativo de caracteristicas de crescimento e reproductivas em bovinos da raÇa Brahman no Brasil. (Tesis de maestría). Universidade Estadual Paulista, 23-30. 2006; Disponible en: https://repositorio.unesp.br/bitstream/handle/11449/92629/faria_lc_me_jabo.pdf?sequence=1&isAllowed=y
  9. Zhang S, Regnault T R, Barker P L, Botting K J, McMillen I C, McMillan C M, Morrison J L. Placental adaptations in growth restriction. Nutrients. 2015; 7(1), 360-389. https://doi.org/10.3390/nu7010360
  10. https://doi.org/10.3390/nu7010360
  11. J. Li, A. J. Control of growth hormone receptor and insulin-like growth factor-I expression by cortisol in ovine fetal skeletal muscle. The Journal of Physiology, 2002; 541(2), 581-589 https://doi.org/10.1113/jphysiol.2002.016402
  12. https://doi.org/10.1113/jphysiol.2002.016402
  13. Mohammad Koohmaraie, MP. Meat tenderness and muscle growth: is there any relationship. Meat science. 2002; 62(3), 345-352. https://doi.org/10.1016/S0309-1740(02)00127-4
  14. https://doi.org/10.1016/S0309-1740(02)00127-4
  15. Díaz AÁ. Esteban, H. P., Hernández, T. D. L. C. M., Torres, J. Q., & Puzo, A. S. Fisiología animal aplicada. Editorial Universidad de Antioquia. 2009.
  16. Devesa J, Devesa P, Reimunde P. Hormona de crecimiento: acciones y aplicaciones preventivas y terapéuticas. Medicina Clínica, 2010; 135(14), 665-670. https://doi.org/10.1016/j.medcli.2009.10.017
  17. https://doi.org/10.1016/j.medcli.2009.10.017
  18. Rajni Kumari, R. K. GENETIC POLYMORPHISM OF GROWTH HORMONE GENE IN NATIVE SHEEP BREEDS OF INDIA. The Indian Journal of Small Ruminants. 2014. Disponible en: https://indianjournals.com/ijor.aspx?target=ijor:ijsr&volume=20&issue=2&article=003
  19. Valencia, C. F. Association of single nucleotide polymorphisms in the CAPN, CAST, LEP, GH, and IGF-1 genes with growth parameters and ultrasound characteristics of the Longissimus dorsi muscle in Colombian hair sheep. Trop Anim Health Prod, 2022; 54 - 82. doi:https://doi.org/10.1007/s11250-022-03086-x
  20. https://doi.org/10.1007/s11250-022-03086-x
  21. Devesa J, Almengló C, Devesa P. Multiple effects of growth hormone in the body: is it really the hormone for growth?. Clinical Medicine Insights: Endocrinology and Diabetes. 2016; 9, CMED-S38201. https://doi.org/10.4137/CMED.S38201
  22. https://doi.org/10.4137/CMED.S38201
  23. Sebastiano, L. C. Polymorphism of insulin-like growth factor 1 gene and its relationship with reproductive performances and milk yield in Sarda dairy sheep. Veterinary and Animal Science. 2020; doi:https://doi.org/10.1016/j.vas.2019.100084
  24. https://doi.org/10.1016/j.vas.2019.100084
  25. Karadag, O. The polymorphism of insulin-like growth factor-1 receptor (IGF-1R) gene in meat-type Lambs in Turkey: I. Effect on growth traits and body measurements. Small Ruminant Research. 2022; 215. doi:https://doi.org/10.1016/j.smallrumres.2022.106765
  26. https://doi.org/10.1016/j.smallrumres.2022.106765
  27. Simal R S. Hormona del crecimiento (GH). Fisiologia humana II. 2012. Disponible en: http://www.webfisio.es/fisiologia/endocrino/textos/gh.htm#e31 ISBN: 84-688-1218-8.
  28. Beermann D. H. Physiology. Dikeman M, Devine C editor. Encyclopedia of Meat Sciences. 2nd ed Kansas, Manhattan; USA, Hamilton; New Zeland 2014.
  29. Altwaty NH, S. L. Single nucleotide polymorphisms in the growth hormone receptor gene and Alu1 polymorphisms in the diacylglycerol acyltransferase 1 gene as related to meat production in sheep. Vet World. 2020; 884-889. doi: 10.14202/vetworld.2020.884-889
  30. https://doi.org/10.14202/vetworld.2020.884-889
  31. Shakweer, W. A.-R. Cloning, nucleotide sequencing, and bioinformatics analyses of growth hormone mRNA of Assaf sheep and Boer goats reared in Egypt. J Genet Eng Biotechnol, 2020; 18- 30. doi:https://doi.org/10.1186/s43141-020-00046-6
  32. https://doi.org/10.1186/s43141-020-00046-6
  33. Marwal A, Gaur Rajarshi. Molecular Markers: Tools for Genetic Analysis. Animal Biotechnology, 2nd Edition Models in Discovery and Translation. 2020; pp.353-372. Disponible en: https://www.researchgate.net/publication/342330547_Molecular_Markers_Tools_for_Genetic_Analysis
  34. https://doi.org/10.1016/B978-0-12-811710-1.00016-1
  35. Chekol C, Gebreyohannes M. Application and current trends of biotechnology: a brief review. Austin Journal of Biotechnology & Bioengineering, 2018; vol. 5, no 1, p. 1-8. Disponible en: https://biotechnology.report/Resources/Whitepapers/28d904dc-b8e3-4b1a-9c76-bf32a6734c47_fulltext_ajbtbe.pdf
  36. E. Armstrong, G. C. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Science, 2018; 202-208. doi:https://doi.org/10.1016/j.meatsci.2018.06.014
  37. https://doi.org/10.1016/j.meatsci.2018.06.014
  38. Koopaee H K, Koshkoiyeh A E. SNPs Genotyping technologies and their applications in farm animals breeding programs. Brazilian Archives of Biology and Technology, 2014; 57(1), 87-95. Disponible en: https://www.scielo.br/j/babt/a/fSn5pdNkvvLk9BMxhhfdKcd/?format=pdf&lang=en ISSN 1516-8913
  39. https://doi.org/10.1590/S1516-89132014000100013
  40. Qasimi Al, R. H., Hassan, A. F., & Khudair, B. Y. (2019). Effect of IGF-1 and GH Genes polymorphism on weights and body measurements of Awassi lambs in different ages. Basrah Journal of Agricultural Sciences, 32(1), 39-46.
  41. https://doi.org/10.37077/25200860.2019.125
  42. Peñafiel N, Flores D M, Rivero- De Aguilar J, Guayasamin J M, Bonaccorso E. A cost-effective protocol for total DNA isolation from animal tissue. Neotropical Biodiversity, 2019; 5( 1), 69-74. https://doi.org/10.1080/23766808.2019.1706387
  43. https://doi.org/10.1080/23766808.2019.1706387
  44. Montgomery G W, Sise J. Extraction of DNA from sheep white blood cells. New Zealand Journal of Agricultural Research, 1990; 33(3), 437-441. https://doi.org/10.1080/00288233.1990.10428440
  45. https://doi.org/10.1080/00288233.1990.10428440
  46. Rosa V L. Identificação de polimorfismos no gene do IGF-I em bovinos (Bos taurus) da raça Crioula Lageana. Universidade Federal de Santa Catarina. 2016. Disponible en: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/174490/TCC%20- %20VANESSA%20LAUS%20DA%20ROSA.pdf?sequence=1&isAllowed=y
  47. Rodriguez, M. R. Estudio de los genes MYF5, PDE1B e IGF1 y los microsatelites BM6026, CSSM34, RM500 Y ETH10 asociados a crecimiento en ganado Criollo Romosinuano. Bogota D.C: Universidad Nacional de Colombia. 2010. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-29522010000100004 Print version ISSN 0120-2952
  48. García L A. Polimorfismos en el gen de la hormona del crecimiento bovina y su asociación a características de producción. Ciencia AUT. 2009; Disponible en: http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/370/181 ISSN 2007-7521. 4(1) 54-57
  49. Castro-Molina SL, Ariza-Botero MF, Ríos-Rodriguez M, Moreno DJ, Guerrero-Castillo GH. Using PCR-SSCP for detecting polymorphism 1843 in the ryanodine receptor gene. Orinoquia, 2011; .15(2), 192-200. Disponible en: http://www.scielo.org.co/scielo.php?pid=S0121-37092011000200007&script=sci_abstract&tlng=pt ISSN 0121-3709.
  50. https://doi.org/10.22579/20112629.19
  51. Ortiz-Sanchéz Y, Martínez-Guzmán M, Kübler I, Ariza M F, Castro-Molina S, Infante-González, J. Diversidad genética del Ovino Criollo de Pelo Colombiano mediante el uso del marcador molecular de tipo polimorfismos de nucleótido simple (SNP). Revista de Investigaciones Veterinarias del Perú, 2021; 32(1). http://dx.doi.org/10.15381/rivep.v32i1.19487
  52. https://doi.org/10.15381/rivep.v32i1.19487
  53. Meira, A. N. Single nucleotide polymorphisms in the growth hormone and IGF type-1 (IGF1) genes associated with carcass traits in Santa Ines sheep. Animal, 2019; 460-468. oi:doi:10.1017/S1751731118001362
  54. https://doi.org/10.1017/S1751731118001362
  55. . NBCI. (S.f). GH growth hormone Ovis aries (sheep). Disponible en: https://www.ncbi.nlm.nih.gov/gene/443329
  56. NCBI. (S.f). IGF1 insulin like growth factor 1 Ovis aries (sheep). Obtenido de https://www.ncbi.nlm.nih.gov/gene/443318
  57. Kalmes R, Huret J L. Atlas of Genetics and Cytogenetics in Oncology and Haematology. 2001. Disponible en: Modelo de Hardy-Weinberg: http://atlasgeneticsoncology.org/Educ/HardySp.html
  58. Supakorn, C. Effect of growth hormone and growth hormone receptor genes for preweaning growth traits in a multibreed beef population. Kasetsart University, Tailandia. 2007.
  59. Balia F, Garippa G, Vacca G M. Effetto del polimorfismo del gen GH ovino sulla produzione di latte. (tesis maestría). Italia Università degli studi di Sassari. 2012; Disponible en: http://eprints.uniss.it/8476/1/Balia_F_Effetto_polimorfismo_gene_GH.pdf
  60. Gorlov I F, Kolosov Y A, Shirokova N V, Getmantseva L V, Slozhenkina M I, Mosolova N I, Zlobina E Y. Association of the growth hormone gene polymorphism with growth traits in Salsk sheep breed. Small Ruminant Research, 2017;150, 11-14. https://doi.org/10.1016/j.smallrumres.2017.02.019
  61. https://doi.org/10.1016/j.smallrumres.2017.02.019
  62. Piza-Jerez A C. Polimorfismos en genes candidatos asociados a parámetros de crecimiento y rendimiento en canal de ovinos (Ovis aries) del centro agropecuario Marengo y concepción, Santander. (Tesis maestria). Universidad Nacional de Colombia, 2018; 129-133. https://repositorio.unal.edu.co/handle/unal/69133
  63. Kumari R, Kumar R, Meena A, Jyotsana B, Prince L, Kumar S. Genetic polymorphism of growth hormone gene in native sheep breds of India. The Indian Journal of Small Ruminants. 2014; 15-18. Disponible en: https://www.researchgate.net/publication/267926327 Online ISSN: 0973-9718.
  64. Thissen J P, Ketelslegers J M, Underwood L E. Nutritional regulation of the insulin-like growth factors. Endocrine reviews. 1994; 15(1), 80-101.doi:https://doi.org/10.1210/edrv-15-1-80
  65. https://doi.org/10.1210/edrv-15-1-80
  66. He J N, Zhahg B Y, Chu M X, Wang P Q, Feng T, Cao G L, Li N. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Molecular Biology Reports. 2012; Disponible en: https://rd.springer.com/article/10.1007/s11033-012-1846-y
  67. https://doi.org/10.1007/s11033-012-1846-y
  68. Lateulade- Basigaluz, M D P, Kaitazoff Lago, A. Asociación de un marcador genético del factor similar a la insulina-1 (IGF-1) con características de crecimiento de terneras Aberdeen Angus. (Tesis de grado). Universidad de la Republica, Monteviode, Uruguay. 2012; Disponible en: https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/1679/1/3852bas.pdf
  69. Francis G L, Kerrie A, Mcneil J C, Ballard F J, Owens P C. Sheep Insulin-Like Growth Factors I and II: Sequences, Activities and Assays. Endocrinology. 1989; Disponible en: https://academic.oup.com/endo/article-abstract/124/3/1173/2531915?redirectedFrom=fulltext
  70. https://doi.org/10.1210/endo-124-3-1173
  71. Meira A, Montenegro H, Coutinho L, Mourão G, Azevedo H, Muniz E, Machado A, Junior L, Pedrosa V, Pinto L. Single nucleotide polymorphisms in the growth hormone and IGF type-1 (IGF1) genes associated with carcass traits in Santa Ines sheep. Animal. International journal of animal Bioscience. 2019; 13(3), 460-468. https://doi.org/10.1017/S1751731118001362
  72. https://doi.org/10.1017/S1751731118001362
  73. Luridiana S, Mura MC, Di Stefano MV, Pulinas L, Cosso G, Nehme M, Vincenzo C. Polymorphism of insulin-like growth factor 1 gene and its relationship with reproductive performances and milk yield in Sarda dairy sheep. Veterinary and Animal Science. 2020; doi:https://doi.org/10.1016/j.vas.2019.100084
  74. https://doi.org/10.1016/j.vas.2019.100084
  75. Cuetia-Londoño J A. Polimorfismos de los genes Calpaina, Calpastatina y leptina en diez razas bovinas criollas mediantes siete marcadores de polimorfismos de nucleotidos simples (SNPs) (tesis maestria). Universidad Nacional de Colombia Palmira, Colombia. 2012; Disponible en: https://repositorio.unal.edu.co/handle/unal/20014
Sistema OJS 3.4.0.5 - Metabiblioteca |