Skip to main navigation menu Skip to main content Skip to site footer

Animal Model of Anemia induced of chronic phlebotomy:Functional relationship between iron and erythropoiesis

Modelo animal de anemia inducida por flebotomía crónica: Relación funcional entre hierro y eritropoyesis




Section
Artículo Original

How to Cite
Gaona Prieto et al., S. (2012). Animal Model of Anemia induced of chronic phlebotomy:Functional relationship between iron and erythropoiesis. NOVA, 10(17). https://doi.org/10.22490/24629448.517

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Suani Gaona Prieto et al.

    In the present work we studied the erythropoietic response to chronic phlebotomy-induced anemia and changes in cellular and systemic body iron distribution. Female mice (CF1 strain, n = 32) were divided into control and experimental groups, following a paired experimental design  Iron distribution in spleen and liver during chronic phlebotomy was assessed by morphological studies and erythropoietic activity by hematological studies. Statistical differences were determined by Student test. The significance level was set at p <0.05. During chronic phlebotomy we observed a significantly decreased of hemoglobin as an anemia indicator and reticulocytosis as an indicator of erythron restoration. Adult mouse spleen was the main tissue that contributed available iron to the erythron, being evident splenic iron depletion. The study of chronic induced anemia in mice allowed us to the development of patho physiological conditions similar to those observed in human pathologies. The model of chronic phlebotomy was useful to evaluate the erythropoiesis in the setting of anemia and its recovery, correlating with the distribution of an essential nutrient such as iron.


    Article visits 207 | PDF visits 137


    Downloads

    Download data is not yet available.
    1. Pérez G, Vittori D, Pregi N, Garbossa G, Nesse A. Homeostasis del hierro. Mecanismos de absorción, captación celular y regulación. Acta Bioquím Clin Latinoam 2005; 39(3): 301-14.
    2. Dunn L, Suryo Y, Richardson D. Iron uptake and metabolism in the new millennium. Trends Cell Biol 2006; 17 (2): 93-100.
    3. Ganz T. Nement E. Regulation of iron acquisition and iron distribution in mammals. Acta Biochim Biophys. 2006; 1763: 690- 9.
    4. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell 2005; 122: 789-801.
    5. Latunde-Dada GO, Westhuizen JV, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cell Mol Dis 2002; 29: 356-60.
    6. Mackenzie B, Garrick MD. Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 2005; 289: 981-6.
    7. Torti FM, Torti S. Regulation of ferritin genes and protein. Blood 2002; 99: 3505-16.
    8. Matsuno T, Mori M, Awai M. Distribution of ferritin and hemosiderin in the liver, spleen and bone marrow of normal, phlebotomized and iron overloaded rats. Acta Med Okayama 1985; 39: 347-60.
    9. D’Anna C, Veuthey T, Roque M. Immunolocalization of Ferroportin in Healthy and Anemic Mice. J Histochem Cytochem. 2009; 57(1): 9– 16.
    10. Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 2000; 275: 19906-12.
    11. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306: 2090-3.
    12. Ganz T, Brissot P, Cohen A. Hepcidin and Its Role in Regulating Systemic Iron Metabolism. Am Soc Hematol. 2006; 1: 29- 35.
    13. Muckenthaler M, Galy B, Hentze M. Systemic iron homeostasis and the Ironresponsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008; 28: 21 9.
    14. Viatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie 2009; 1-6.
    15. Pantapoulos K. Function of the hemochromatosis protein HFE: lessons from animal models. World J Gastroenterol 2008; 14(45): 6893-901
    16. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 2007; 117: 1933-9.
    17. Graham RM, Chua AC, Herbison CE, Olynyk JK, Trinder D. Liver iron transport. World J Gastroenterol 2007; 13: 4725-36.
    18. Tabuchi M, Yanatori I, Kawai Y, Kishi F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 2010; 123:756-6.
    19. Knutson MD, Wessling-Resnick M. Iron metabolism in the reticuloendothelial system.
    20. Crit Rev Biochem Mol 2003: 38: 61-88.
    21. Shaw J, Friedman J. Iron Deficiency Anemia: Focus on Infectious Diseases in Lesser
    22. Developed Countries. Anemia. 2011; 1- 10.
    23. Roque M, Gatti C, Aggio M. Estudios para evaluar el hierro corporal. Ars Pharm. 2005; 46 (2): 181- 91.
    24. Arribas J, Vallina E. Hematología Clínica Temas de Patología Médica Oviedo. Textos universitarios ediuno. 2005. p 55-8.
    25. Kellera G, Lacauda G, Robertsona S. Development of the hematopoietic system in the mouse. Rev Clin Exp Hematol. 1999; 27: 777– 87.
    26. Guide for the care and use of laboratory animals. National Research Council. Washington DC, 1996.
    27. Fox J, Barthold S, Davisson M, Newcomer C, Quimby F, Smith F. The Mouse in Biomedical Research: Diseases. Ed. ELSEVIER. 2007; p142-50.
    28. Roque M, D´Anna C, Gatti C, Veuthey T. Hematological and Morphological Analysis of the Erythropoietic Regenerative Response in Phenylhydrazine-induced Hemolytic Anemia in Mice. Scand. J. Lab. Anim. Sci. 2008; 35 (3): 181- 90.
    29. D´Anna C, Gatti C, Veuthey T, Sánchez M, Roque M. Eritropoyesis y Esplenectomía en un Modelo Murino. Rev Cientf AMBB. 2006; 16 (4): 88- 9
    30. Camberlein E, Abgueguen E, Fatih N, François Hergaux C, Leroyer P, Turlin B, et al. Hepcidin induction limits mobilisation of splenic iron in a mouse model of secondary iron overload. Elsevier.2002; 339– 46.
    31. Latunde-dada GO, AT McKie & RJ Simpson: Animal models with enhanced erythropoiesis and iron absorption. Biochim Biophys Acta 2006, 1762, 414-423.
    32. -----------------------------------------------------------------------------------
    33. DOI: http://dx.doi.org/10.22490/24629448.517
    Sistema OJS 3.4.0.5 - Metabiblioteca |