Skip to main navigation menu Skip to main content Skip to site footer

Calcium channels as a pharmacological target

Canales de calcio como blanco de interés farmacológico




Section
Articulo de Revisión

How to Cite
Lozano Jiménez, Y. Y., & Sánchez Mora, R. M. (2020). Calcium channels as a pharmacological target. NOVA, 18(34), 57-76. https://doi.org/10.22490/24629448.3926

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Yenny Yolanda Lozano Jiménez
    Ruth Mélida Sánchez Mora

      Calcium channels are membrane proteins that constitute the most important route for the entry of the calcium ion (Ca2+) into the cell. When opened, they allow selective ion entrance, starting a variety of processes such as muscular contraction, endocrine secretion and neurotransmitters release, among others. These proteins are classified in three categories according to their structural and functional properties: (i) Receptor-operated calcium channels (ROCC), (ii) Channels activated by physical parameters (Transient Receptor Potential or TRP-channels) and (iii) Voltage-dependent calcium channels (VDCCs), the latter being the most studied due to its presence in excitable cells. Given the importance of Ca2+ in the cellular physiology, the calcium channels constitute targets for pharmacological action for multiple treatments, and therefore, they are object of study for the development of new medicaments. The objective of this review is to explain the importance of the channels of Ca2 + from a pharmacological projection, by exploring the articles published, bearing in mind topics related to the structure of the channels Ca2+, properties of their biophysics, cellular location, functioning and their pharmacological interaction.


      Article visits 397 | PDF visits 206


      Downloads

      Download data is not yet available.

      1. Eisenman G, Dani JA. An introduction to molecular architecture and permeability of ion channels. Annual review of biophysics and biophysical chemistry. 1987;16:205-26.

      2. Reuter H, Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. The Journal of physiology. 1977;264(1):17-47.

      3. Tang L, Gamal El-Din TM, Lenaeus MJ, Zheng N, Catterall WA. Structural Basis for Diltiazem Block of a Voltage-Gated Ca(2+) Channel. Molecular pharmacology. 2019;96(4):485-92.

      4. Yue L, Navarro B, Ren D, Ramos A, Clapham DE. The cation selectivity filter of the bacterial sodium channel, NaChBac. The Journal of general physiology. 2002;120(6):845-53.

      5. Wang Y, Finol-Urdaneta RK, Ngo VA, French RJ, Noskov SY. Bases of Bacterial Sodium Channel Selectivity Among Organic Cations. Scientific reports. 2019;9(1):15260.

      6. Barnes S, Bui Q. Modulation of calcium-activated chloride current via pH-induced changes of calcium channel properties in cone photoreceptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1991;11(12):4015-23.

      7. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112(6):819-29.

      8. Yamakage M, Namiki A. Calcium channels--basic aspects of their structure, function and gene encoding; anesthetic action on the channels--a review. Canadian journal of anaesthesia = Journal canadien d'anesthesie. 2002;49(2):151-64.

      9. Miljanich GP, Ramachandran J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annual review of pharmacology and toxicology. 1995;35:707-34.

      10. Ghatta S, Nimmagadda D, Xu X, O'Rourke ST. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacology & therapeutics. 2006;110(1):103-16.

      11. McCleskey EW, Fox AP, Feldman D, Tsien RW. Different types of calcium channels. The Journal of experimental biology. 1986;124:177-90.

      12. McFadzean I, Gibson A. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle. British journal of pharmacology. 2002;135(1):1-13.

      13. Villereal ML, Palfrey HC. Intracellular calcium and cell function. Annual review of nutrition. 1989;9:347-76.

      14. Miller RJ. Multiple calcium channels and neuronal function. Science. 1987;235(4784):46-52.

      15. Florez J, Armijo JA, Mediavilla A. Farmacología humana: Elsevier Masson; 2013 16 diciembre 2013. 1216 p.

      16. Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1998;18(8):2954-61.

      17. Yi F, Traynelis SF, Hansen KB. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. Methods in molecular biology. 2017;1677:145-62.

      18. Lieberman DN, Mody I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature. 1994;369(6477):235-9.

      19. Ehlers MD, Zhang S, Bernhadt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell. 1996;84(5):745-55.

      20. Rycroft BK, Gibb AJ. Inhibitory interactions of calcineurin (phosphatase 2B) and calmodulin on rat hippocampal NMDA receptors. Neuropharmacology. 2004;47(4):505-14.

      21. Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature. 1991;350(6315):235-8.

      22. Mazzaferro S, Bermudez I, Sine SM. Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cellular and molecular life sciences : CMLS. 2019;76(6):1151-67.

      23. Cheng H, Lederer WJ. Calcium sparks. Physiological reviews. 2008;88(4):1491-545.

      24. Berridge MJ. Elementary and global aspects of calcium signalling. The Journal of experimental biology. 1997;200(Pt 2):315-9.

      25. Lodish H. Biología celular y molecular. 5 ed. Panamericana EM, editor. Bogotá Ed. Médica Panamericana; 2005 2005.

      26. Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological reviews. 2005;57(4):427-50.

      27. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517-24.

      28. Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555(7698):662-6.

      29. Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, et al. TRPV6 potentiates calcium-dependent cell proliferation. Cell calcium. 2006;39(2):163-73.

      30. Cai S, Fatherazi S, Presland RB, Belton CM, Roberts FA, Goodwin PC, et al. Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Archiv : European journal of physiology. 2006;452(1):43-52.

      31. Cai S, Fatherazi S, Presland RB, Belton CM, Izutsu KT. TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. Journal of dermatological science. 2005;40(1):21-8.

      32. Boyce ST, Ham RG. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. The Journal of investigative dermatology. 1983;81(1 Suppl):33s-40s.

      33. Bertolino M, Llinas RR. The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annual review of pharmacology and toxicology. 1992;32:399-421.

      34. Jan LY, Jan YN. Voltage-sensitive ion channels. Cell. 1989;56(1):13-25.

      35. Walker D, Bichet D, Campbell KP, De Waard M. A beta 4 isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca2+ channel alpha 1A subunit. The Journal of biological chemistry. 1998;273(4):2361-7.

      36. Hering S. beta-Subunits: fine tuning of Ca(2+) channel block. Trends in pharmacological sciences. 2002;23(11):509-13.

      37. Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N. The roles of the subunits in the function of the calcium channel. Science. 1991;253(5027):1553-7.

      38. Wang M, Offord J, Oxender DL, Su TZ. Structural requirement of the calcium-channel subunit alpha2delta for gabapentin binding. The Biochemical journal. 1999;342 ( Pt 2):313-20.

      39. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. The Journal of biological chemistry. 1996;271(10):5768-76.

      40. Llinas R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. The Journal of physiology. 1986;376:163-82.

      41. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, et al. Nomenclature of voltage-gated calcium channels. Neuron. 2000;25(3):533-5.

      42. Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circulation research. 2000;87(12):1095-102.

      43. Clapham DE. Calcium signaling. Cell. 2007;131(6):1047-58.

      44. Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell calcium. 2005;38(3-4):303-10.

      45. Carafoli E. Calcium signaling: a tale for all seasons. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(3):1115-22.

      46. Brown EM, Vassilev PM, Hebert SC. Calcium ions as extracellular messengers. Cell. 1995;83(5):679-82.

      47. Hofer AM, Gerbino A, Caroppo R, Curci S. The extracellular calcium-sensing receptor and cell-cell signaling in epithelia. Cell calcium. 2004;35(3):297-306.

      48. Chen YF, Chen YT, Chiu WT, Shen MR. Remodeling of calcium signaling in tumor progression. Journal of biomedical science. 2013;20:23.

      49. Onal B, Gratz D, Hund TJ. Ca(2+)/calmodulin-dependent kinase II-dependent regulation of atrial myocyte late Na(+) current, Ca(2+) cycling, and excitability: a mathematical modeling study. American journal of physiology Heart and circulatory physiology. 2017;313(6):H1227-H39.

      50. Burstenbinder K, Moller B, Plotner R, Stamm G, Hause G, Mitra D, et al. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. Plant physiology. 2017;173(3):1692-708.

      51. Melzer W, Herrmann-Frank A, Luttgau HC. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochimica et biophysica acta. 1995;1241(1):59-116.

      52. Gehlert S, Bloch W, Suhr F. Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. International journal of molecular sciences. 2015;16(1):1066-95.

      53. Dayal A, Ng SFJ, Grabner M. Ca(2+)-activated Cl(-) channel TMEM16A/ANO1 identified in zebrafish skeletal muscle is crucial for action potential acceleration. Nature communications. 2019;10(1):115.

      54. Hardman JG, Limbird LE, Gilman AG. Goodman & Gilman. Las bases farmacológicas de la terapéutica. 13 ed. Interamericana M-H, editor. México: McGraw-Hill Interamericana; 2018 2018.

      55. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362(6418):318-24.

      56. Tolar LA, Pallanck L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1998;18(24):10250-6.

      57. Golby JA, Tolar LA, Pallanck L. Partitioning of N-ethylmaleimide-sensitive fusion (NSF) protein function in Drosophila melanogaster: dNSF1 is required in the nervous system, and dNSF2 is required in mesoderm. Genetics. 2001;158(1):265-78.

      58. Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE. The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. The Journal of biological chemistry. 2001;276(30):27816-24.

      59. Grespan E, Giorgino T, Arslanian S, Natali A, Ferrannini E, Mari A. Defective Amplifying Pathway of beta-Cell Secretory Response to Glucose in Type 2 Diabetes: Integrated Modeling of In Vitro and In Vivo Evidence. Diabetes. 2018;67(3):496-506.

      60. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751-60.

      61. Berridge MJ. Calcium signalling and cell proliferation. BioEssays : news and reviews in molecular, cellular and developmental biology. 1995;17(6):491-500.

      62. Berridge MJ. Inositol trisphosphate and calcium signalling mechanisms. Biochimica et biophysica acta. 2009;1793(6):933-40.

      63. Garcia-Cozar FJ, Okamura H, Aramburu JF, Shaw KT, Pelletier L, Showalter R, et al. Two-site interaction of nuclear factor of activated T cells with activated calcineurin. The Journal of biological chemistry. 1998;273(37):23877-83.

      64. Hardingham GE, Chawla S, Johnson CM, Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997;385(6613):260-5.

      65. Fons N. Textbook of Drug Design and Discovery, Fifth Edition. Yale J Biol Med. 2017;90(1):160-.

      66. Katzung BG. Farmacología básica y clínica. 14 ed. Serrano H, editor. México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. de C.V.; 2019 2019.

      67. Abernethy DR, Soldatov NM. Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. The Journal of pharmacology and experimental therapeutics. 2002;300(3):724-8.

      68. Xu L, Tripathy A, Pasek DA, Meissner G. Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms. The Journal of biological chemistry. 1999;274(46):32680-91.

      69. Shi H, Halvorsen YD, Ellis PN, Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. Physiological genomics. 2000;3(2):75-82.

      70. Goudarzi F, Mohammadalipour A, Khodadadi I, Karimi S, Mostoli R, Bahabadi M, et al. The Role of Calcium in Differentiation of Human Adipose-Derived Stem Cells to Adipocytes. Molecular biotechnology. 2018;60(4):279-89.

      71. Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circulation research. 2007;100(7):1063-70.

      72. Asad, A., Florencia Zuccato, C., Nicola Candia, A., Florencia Gottardo, M., Moreno Ayala, M., Theas, M., Seilicovich, A., & Candolfi, M. (2019). Papel del péptido mitocondrial humanina como blanco terapéutico en cáncer y neurodegeneración. NOVA, 17(32), 9-24 Disponible en: https://revistas.unicolmayor.edu.co/index.php/nova/article/view/1029.

      73. Koch WJ, Ellinor PT, Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. The Journal of biological chemistry. 1990;265(29):17786-91.

      Sistema OJS 3.4.0.5 - Metabiblioteca |