Skip to main navigation menu Skip to main content Skip to site footer

Chemical incorporation of fluorescent Probe flAsH on the Hha Protein:Application to the Study of complex Hha/H-NS

Incorporación química de la sonda fluorescente FlAsH en la proteína Hha: aplicación al estudio del complejo Hha/H-NS




Section
Artículo Original

How to Cite
Granados Acevedo, C., Cordeiro, T., & Pons, M. (2009). Chemical incorporation of fluorescent Probe flAsH on the Hha Protein:Application to the Study of complex Hha/H-NS. NOVA, 7(11). https://doi.org/10.22490/24629448.412

Dimensions
PlumX
license

Licencia Creative Commons

NOVA by http://www.unicolmayor.edu.co/publicaciones/index.php/nova is distributed under a license creative commons non comertial-atribution-withoutderive 4.0 international.

Furthermore, the authors keep their property intellectual rights over the articles.

 

Catalina Granados Acevedo
    Tiago Cordeiro
      Miquel Pons

        The objective of this investigation was the development of studies of incorporation of the probe F1AsH as a possible tool for the study in vitro and in vivo of the protein Hha and the interaction with H-NS. A protein was constructed with the specific sequence “CCPGCC” able to join the fluorescent molecular probe FLAsH; later, processes of transformation, expression, and purification were developed, with which it was demonstrated that even with the introduction of an additional no native sequence in the protein, it could be obtain protein in a good amount, stability, yield and whit a high level of purity. The optimization of the protocol of incorporation of FLAsH was made considering the yield and the time of reaction. FLAsH was characterized with fluorescence and was verified with MALDI TOF. The incorporation HhaCCPGCC1/ FLAsH could not be obtained in a high percent as it was expected; therefore, the studies of interaction between the protein complex Hha and H-NS could not be done.

        Article visits 181 | PDF visits 80


        Downloads

        Download data is not yet available.
        1. Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS famil of proteins. Mol Microbiol. 2007;63:7-14.
        2. Varshavsky, A., Nedospasov, S. A., Bakayev, V. V., Bakayeva, T. G. and Georgiev, G. P. Histone-like proteins in the E. coli chromosome. Nucl. Acids Res. 1977:4: 2725-2745.
        3. Lammi M, Paci M, Pon CL, Losso MA, Miano A, Pawlik RT, et al. Proteins from the prokaryotic nucleoid: biochemical and 1H NMR studies on three bacterial histone-like proteins. Adv Exp Med Biol. 1984;179:467-477.
        4. Spassky A, Rimsky S, Garreau H, Buc H. H1a, an E. coli ADN-binding protein which accumulates in stationary phase, strongly compacts AND in Vitro. Nucleic Acids Res. 1984;12.5321-5340.
        5. Schröder O, Wagner R. The bacterial regulatory protein H-NS- -a versatile modulator of nucleic acid structures. Biol Chem. 2002;383:945-960.
        6. Pons I. La familia de proteínas Hha-YmoA: estudios estructurales y papel regulador en Yersinia Enterocolitica. Tesis Doctoral. Universitat de Barcelona, 2006.
        7. Azam TA, Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and ADN binding affinity. J Biol Chem. 1999;274:33105-33113.
        8. Dorman CJ, Hinton JC, Free A. Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol. 1999;7:124-128.
        9. Badaut C, Williams R, Arluison V, Bouffartigues E, Robert B, Buc H, Rimsky S. The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to ADN. J Biol Chem. 2002;277:41657-41666.
        10. Esposito D, Petrovic A, Harris R, Ono S, Eccleston JF, Mbabaali A, et al. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol. 2002;324:841- 850.
        11. Bloch V, Yang Y, Margeat E, Chavanieu A, Augé MT, Robert B, et al. The H-NS dimerization domain defines a new fold contributing to AD recognition. Nat Struct Biol. 2003;10:212-218.
        12. Dorman CJ. H-NS: A universal regulador for a dynamic genome. Nat Rev Microbiol 2004;12:179-184.
        13. Godessart N, Muñoa FJ, Regue M, Juárez A. Chromosomal mutations that increase the production of a plasmid-encoded haemolysin in Escherichia coli. J Gen Microbiol. 1988;134:2779-2787.
        14. Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, et al. An NMR approach to structural proteomics. Proc Natl Acad Sci U S A. 2002;99:1825-1830.
        15. Nieto JM, Madrid C, Miquelay E, Parra JL, Rodríguez S, Juárez A. Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J Bacteriol. 2002;184:629-635.
        16. Rodríguez S. Interacción entre proteínas de las familias H-NS y Hha / YmoA: regulación de la expresión génica en Enterobacteriaceae. Tesis Doctoral. Facultad de Biología. Universitat de Barcelona, 2005.
        17. Cordeiro T. Dynamic and structural aspects of the interaction between Hha and H-NS. Diploma of Avanced Studies in Organic Chemistry. Universitat de Barcelona- IRB- Barcelona Science Park, 2008.
        18. García J, Cordeiro TN, Nieto JM, Pons I, Juárez A, Pons M. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha. Biochem J. 2005;388:755-762.
        19. Rimsky S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol. 2004;7:109- 114
        20. Cordeiro T. Insights into the Interaction between Nucleoid-associated Proteins, Hha and H-NS. Formal Training Report. Platform Biomolecular RMN , Barcelona Science Park, Universitat de Barcelona. 2005.
        21. Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol. 2002;3:906-918.
        22. Stroffekova K, Proenza C, Beam KG. The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also nonspecifically to endogenous cysteine-rich proteins. Pflugers Arch. 2001;442:859-866.
        23. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. 2002;124:6063-6076.
        24. Fernández De Alba, C. Estudio de la interacción entre proteínas asociadas al nucleoide mediante anisotropía de fluorescencia. Máster en Química orgánica experimental. Universitat de Barcelona, Institut de Recerca Biomédica de Barcelona, 2007
        25. -------------------------------------------------------------------------------
        26. DOI: http://dx.doi.org/10.22490/24629448.412
        Sistema OJS 3.4.0.5 - Metabiblioteca |