Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de características morfológicas e inmunofenotipo de células madre mesenquimales en cultivo obtenidas a partir de sangre de cordón umbilical y médula ósea.

Evaluación de características morfológicas e inmunofenotipo de células madre mesenquimales en cultivo obtenidas a partir de sangre de cordón umbilical y médula ósea.



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Páez Guerrero, D., Arévalo Romero, J., & Rodríguez Pardo, V. M. (2007). Evaluación de características morfológicas e inmunofenotipo de células madre mesenquimales en cultivo obtenidas a partir de sangre de cordón umbilical y médula ósea. REVISTA NOVA , 5(8). https://doi.org/10.22490/24629448.380

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Diana Páez Guerrero
    Jenny Arévalo Romero
      Viviana Marcela Rodríguez Pardo

        La sangre del cordón umbilical y la médula ósea humana son una alternativa para el aislamiento y cultivo de células madre mesenquimales, útiles en terapias de regeneración tisular e inmunomodulación. El objetivo de este trabajo fue aislar y cultivar células madre mesenquimales a partir de la sangre del cordón umbilical y de la médula ósea. Se recolectaron muestras de sangre de cordón umbilical en el servicio de Gineco-Obstetricia del Hospital Occidente de Kennedy en Bogotá, Colombia. La recolección de médula ósea se realizó en los servicios de ortopedia y traumatología del hospital universitario San Ignacio de Bogotá, Colombia. Se evaluó la tasa de generación celular, características morfológicas por microscopia invertida y tinción de Wright, asi como el inmunofenotipo de las poblaciones celulares por citometría de flujo.

         

        La eficiencia de aislamiento de las células madre mesenquimales a partir de sangre de cordón umbilical fue del 30% con una tasa de generación entre 20 y 50 minutos. A partir de médula ósea el aislamiento fue del 100%, con un tiempo de generación entre 16 y 39 minutos. Se observaron diferencias morfológicas por tinción de Wright y la presencia de progenitores hematopoyéticos durante el cultivo primario (3.54% de CD34+/CD45+), que disminuían cuando se realizaba el primer pase del cultivo (0.19% de CD34+/CD45+). El aislamiento de células madre mesenquimales es más eficiente a partir de medula ósea.

         

        Se observan diferencias morfológicas por microscopia invertida y tinción de Wright entre células aisladas de sangre de cordón umbilical y médula ósea. El antígeno CD105 constituye un marcador importante en el establecimiento del perfil inmunofenotípico de células madre mesenquimales.


        Visitas del artículo 315 | Visitas PDF 150


        Descargas

        Los datos de descarga todavía no están disponibles.
        1. Körbling M, Estrov Z. Adult stem cells for tissue repair – a new therapeutic concept?. N Engl J Med. 2003;349:570-582.
        2. Rodríguez V. Células Madre:Conceptos Generales y Perspectivas de Investigación. Universitas Scientiarum. 2005;10:5-14.
        3. Szilvassy S. The biology of hematopoietic stem cells. Arch Med Res. 2003; 34: 446-60.
        4. Kang X, Zang W, Bao L, Li D, Xu X, Yu X. Differentiating characterization of human umbilical cord blood derived mesenchymal stem cells in vitro. Cell Biol Int. 2006;30:569-575.
        5. Beyer N, Da Silva L. Mesenchymal Stem Cells: Isolation in vitro expansion and characterization. Handb Exp Pharmacol. 2006;174:249-282.
        6. Gregory C, Prockop D, Spees J. Non-hematopoietic bone marrow stem cells: Molecular control of expansion and differentiation. Exp Cell Res. 2005; 306:330-335.
        7. Bianco P, Riminucci M, Gronthos S, Robey P. Bone Marrow Stromal Cells: Nature, biology, and potencial applications. Stem Cells. 2001; 19: 180-92.
        8. Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006;312:2169-2179.
        9. Deans RJ, Moseley AB. Mesenchymal Stem Cells: Biology and potential clinical uses. Exp Hematol. 2000;28:875-884.
        10. Lakshmipathy U, Verfaille C. Stem Cell Plasticity. Blood Rev. 2005;19:29-38.
        11. Wexler S, Donaldson C, Denning P, Rice C, Bradley B, Hows J. Adult bone marrow is a rich source of human mesenchymal «stem» cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121:368-374.
        12. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301-316.
        13. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005; 33:1402-1416.
        14. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294-1301.
        15. Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004; 22:625-634.
        16. Sabatini F, Petecchia I, Tavian M, Jodon V, Rossi G, Brouty-Boye D. Human bronchial fibroblast exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest. 2005;85:962-971.
        17. Shi S, Bartold P, Miura M, Seo B, Robey P, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191-199.
        18. Krampera Ma, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal repair. Bone. 2006;39:678-683.
        19. Krampera Mb, Pasini A, Pizzolo G, Cosmi L, Romagni S, Annunziato. Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol. 2006;6:435-441.
        20. Kassem M, Kristiansen M, Abdallah B. Mesenchymal Stem Cells:Cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol. 2004; 95:209-214.
        21. Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 2001;72:96-107.
        22. Tsuchida H, Hashimoto J, Crawford E, Manske P, Lou J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J Orthop Res. 2003;21:44-53.
        23. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4:S21-S26.
        24. De Bari C, Dell’ accio F, Vandenabeele F, Vermeesch IR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Blood Rev. 2006;200:161-171.
        25. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppresion of allogenic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389-397.
        26. Le Blanc K, Tammik I, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11-20.
        27. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogenic immune cell responses. Blood. 2005;105:1815-1822.
        28. Zhang W, Ge W, Li C, You S, Liao I, Han Q et al. Effects of mesenchymal stem cells on differentiation, maduration, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263-271.
        29. Maurillo L, Del Poeta G, Venditti A, Bucciana F, Battaglia A, Santinelli S et al. Quantitative analisis of Fas and Bcl-2 expression in haematopoietic precursors. Haematologica. 2001;86:237-243.
        30. Chang Y, Tseng C, Hsu I, Hsieh T, Hwang S. Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood. Cell Biol Int. 2006;30:495-499.
        31. Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal cells. Blood. 2005;105:3793-3801.
        32. Gonçalves R, Da Silva C, Cabra J, Zanjani E, Almeida-Porada G. A Stro-1+ human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. Exp Hematol. 2006;34:1353-1359.
        33. -----------------------------------------------------------------------------------
        34. DOI: http://dx.doi.org/10.22490/24629448.380
        Sistema OJS 3.4.0.5 - Metabiblioteca |