Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Adaptación de bacterias a diferentes concentraciones de fenol en el laboratorio: aspectos esenciales para un proceso de biodegradación

Adaptation of bacteria to different concentrations of phenol in the laboratory: essentials for biodegradation process



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Echeverri Jaramillo, G. (2011). Adaptación de bacterias a diferentes concentraciones de fenol en el laboratorio: aspectos esenciales para un proceso de biodegradación. REVISTA NOVA , 9(15). https://doi.org/10.22490/24629448.489

Dimensions
PlumX
Licencia

Licencia Creative Commons
NOVA por http://www.unicolmayor.edu.co/publicaciones/index.php/nova se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Así mismo,  los autores mantienen sus derechos de propiedad intelectual sobre los artículos.  

Gustavo Echeverri Jaramillo

    En el presente trabajo se determinó la carga bacteriana de muestras de agua y suelo contaminadas con diferentes concentraciones de fenol. Se hizo seguimiento en medio mineralizado con concentraciones de 200 a 10000mg/L y variaciones de inoculo. Se evidenciaron cambios en crecimiento bacteriano, encontrándose mayor carga en suelo con fase de adaptación al segundo día y fase de crecimiento en cuarto día. Comparando variaciones del inoculo (directa, adaptado y preenriquecimiento) el directo puede aplicarse para muestras de carga alta (suelo); el preenriquecimiento no es práctico por el estrés bacteriano y adaptado permite ser usado hasta 500mg/L sin problemas. En repiques sobre agares (mineralizados y nutritivo) hubo crecimiento hasta 1000mg/L. Es importante para depurar aguas residuales, encontrar bacterias de diferentes fuentes que resistan altas concentraciones de fenol y permitan efectividad en bioprocesos al estudiar comportamientos de pre adaptación, tiempos y tratamientos adecuados para la preparación del inóculo.


    Visitas del artículo 121 | Visitas PDF 125


    Descargas

    Los datos de descarga todavía no están disponibles.
    1. Chi-Wen, L., Chia-Hsien, Y.,Shen-Long.T.Biotreatment of phenolcontaminated wastewater in a spiral packed-bed bioreactor. Bioprocess BiosystEng.2009(32):575–580.
    2. Jiang, H,TayJand Tay, S.Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Letters in Applied Microbiology. 2002(35): 439–445.
    3. Gurusamy, A., Ruey-Shin, J. and Duu-Jong, L. Biodegradation and adsorption ofphenol using activated carbon immobilized with Pseudomonas putida. J. Environ. Sci. Health, A. 2002(37):1133–1146.
    4. Begonña,M, Hidalgo, A, Serra, JL, Llama, MJ. Degradation of phenol by RhodococcuserythropolisUPV-1 immobilized on Biolite® in a packed-bed reactor.Journal of Biotechnology. 2002(97): 1–11.
    5. Godjevargova, T,Ivanova, D, Alexieva, Z, Dimova, N. Biodegradation of toxic organic components from industrialphenol production waste waters by free and immobilizedTrichosporoncutaneum R57. Process Biochemistry. 2003(38) 915-/920.
    6. Diomi, M., Emmanuel, K., Nikolaos, P., Dimitris G., Hatzinikolaou, P. Biodegradation of Phenol by Acclimatized Pseudomonas putida Cells Using Glucose as an Added Growth Substrate. Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering. 2004 (39): 2093–2104.
    7. Arutchelvan,V, Kanakasabai, V, Elangovan,R,Nagarajan, S,Muralikrishnan, V.Kinetics of high strength phenol degradation using Bacillus brevis.Journal of Hazardous Materials B. 2006(129) 216–222.
    8. Vidya,K, Kalifathulla, I, Srinikethan,G.Performance of pulsed plate bioreactor for biodegradation of phenol. Journal of Hazardous Materials. 2007(140):346–352.
    9. Dipty, S., Fulekar,MH. Bioremediation of Phenol Using Microbial Consortium InBioreactor.Innovative Romanian Food Biotechnology (2007): 1-11.
    10. Ruiz, N, Ruiz, JC, Castañón, JH, Hernández, E, Cristiani, E, y Galíndez, J.PhenolBiodegradationUsing a RepeatedBatch Culture ofCandidatropicalisin a MultistageBubbleColumn. RevistaLatinoamericana de Microbiología2001(43):19-25.
    11. Khaled,M.Biodegradation of Phenol by Actinobacillus Sp.: Mathematical Interpretation and effect of some growth condititions.Bioremediation Journal. 2007 (11):103-12.
    12. Kyung Han Kwon Æ Sung Ho Yeom. Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. BioprocessBiosystEng (2009) 32:435–442.
    13. Morlett, JA, Ascacio, JA, Rivas, AM, Velázquez, JF,Haskins, W, Barrera, HA, Acuña, K. Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. International Biodeterioration & Biodegradation. 2010(64): 581-587.
    14. Yan, J, Jianping, W, Jing, B, Xiaoqiang, J, Zongding, H. Biodegradation of phenol at high initial concentration by Alcaligenesfaecalis.Journal of HazardousMaterials.2007(147): 672–676.
    15. Vidya,K., Ramanjaneyulu, R, Srinikethan,G.Biological phenol removal using immobilized cells in a pulsed plate bioreactor: Effect of dilution rate and influent phenol concentration.Journal of Hazardous Materials. (2007b).
    16. Echeverri, G. et al. Aislamiento de bacterias potencialmente degradadoras de petróleo en hábitats de ecosistemas costeros en la bahía de Cartagena, Colombia. Revista Nova. 2011( 8): 92-102.
    17. Jiangya, Z, Xiaojuan, Y, Cong, D, Zhiping W, Qianqian, Z, Hao, P, Weimin, C. Optimization of phenol degradation by Candida tropicalisZ-04 usingPlackett-Burman design and response surface methodology. Journal of Environmental Sciences. 2011(23):22–30.
    18. Plackett-Burman.Design and Response SurfaceMethodology. Journal of Environmental Sciences. 2011( 23) 22–30.
    19. -------------------------------------------------------------------------------
    20. DOI: http://dx.doi.org/10.22490/24629448.489
    Sistema OJS 3.4.0.5 - Metabiblioteca |